## **PENNAZZATO** dott. Guido

**GEOLOGO** 

N° 88 Ordine dei Geologi del Piemonte

STUDIO E LABORATORIO GEOTECNICO

Via G. Barbera n° 66/D - 10135 TORINO 

Tel. 011 19852687 - Cell. 338 50.77.682

Email <u>studiopennazzato@libero.it</u> Pec <u>studiopennazzato@epap.sicurezzapostale.it</u>

PARTITA IVA 04018400012

CODICE FISCALE PNN GDU 49B26 G674L



**COMUNE DI PINEROLO** 

PIANO DI RECUPERO DI INIZIATIVA PRIVATA ART. 36 COMMA 5

N.d.A. DEL P.R.G.C.: RISTRUTTURAZIONE URBANISTICA DEL COMPARTO COMPRESO TRA VIE NAZIONALE E MADONNINA. AREA A 1.2 DEL P.R.G.C.

COMMITTENTE: Sig. Maurizio BERIA D'ARGENTINA

Via Campana, 7 – 10125 TORINO

## **RELAZIONE GEOLOGICO - GEOTECNICA**

(REVISIONE DELLA RELAZIONE DEL 25/11/2011 A FIRMA DELLO SCRIVENTE)

(D.M. 17/01/2018 – ART. 62 comma 5 NTA P.R.G.C.)

31 LUGLIO 2020

IL TECNICO: Pennazzato dott. geologo Guido

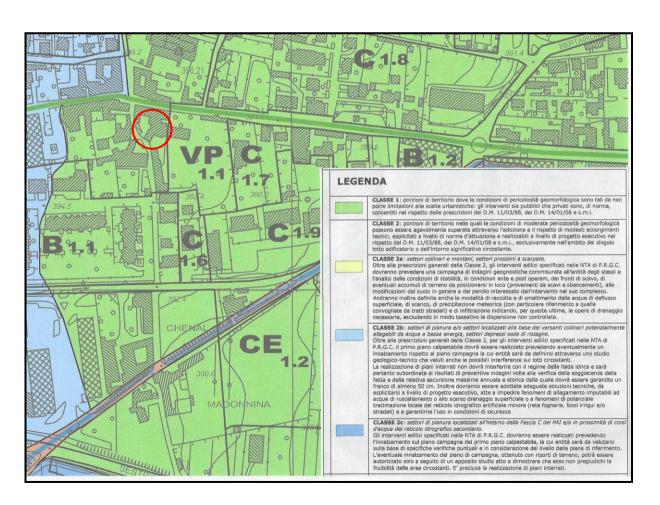


## **INDICE**

| 1. PREMESSA                                                                     | 3  |
|---------------------------------------------------------------------------------|----|
| 2. INQUADRAMENTO GEOGRAFICO                                                     | 5  |
| 3. INQUADRAMENTO GEOLOGICO REGIONALE                                            | 6  |
| 4. CARATTERIZZAZIONE DEL VOLUME GEOLOGICO SIGNIFICATIVO                         | 7  |
| 4.1 - LITOSTRATIGRAFIA<br>4.2 - GEOMORFOLOGIA<br>4.3 - IDROLOGIA E IDROGEOLOGIA | 8  |
| 5. INDAGINI GEOGNOSTICHE E GEOTECNICHE                                          | 10 |
| 5.1 – INDAGINI GEOGNOSTICHE DI CAMPAGNA                                         | 10 |
| 5.2 - INDAGINI GEOTECNICHE DI LABORATORIO                                       |    |
| 6.1 – PARAMETRI DI RIFERIMENTO                                                  | 17 |
| 6.2 – VERIFICA ALLA LIQUEFAZIONE                                                | 23 |
| 7. ATTENDIBILITA' DEL MODELLO GEOLOGICO                                         | 25 |
| 8. PARAMETRI GEOTECNICI DI PROGETTO                                             | 26 |
| 8.2 - VALORI DI PROGETTO                                                        |    |

## **ALLEGATI:**

- CARTA GEOLOGICA;
- INDAGINE GEOFISICA (PROVA MASW) TECHGEA SRL;
- STRATIGRAFIE INDAGINI GEOGNOSTICHE EUROGEO SRL;
- CERTIFICATI DELLE PROVE DI LABORATORIO


## 1. PREMESSA

A seguito della richiesta del progettista delle opere arch. Italo Tomassini, lo scrivente è stato incaricato dalla proprietà di produrre la revisione della relazione redatta in data 25/11/2011 per aggiornarla alla normativa attuale e, in particolare, al DM 17 gennaio 2018.

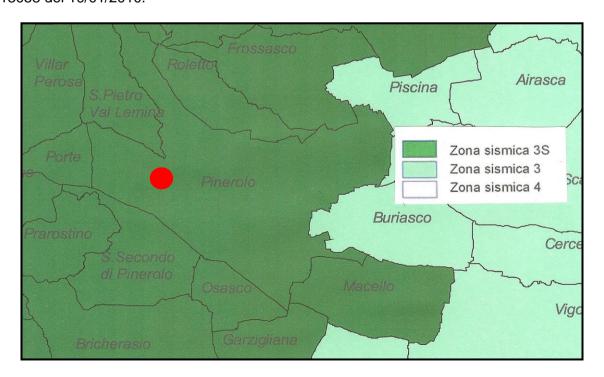
L'area oggetto dell'intervento si colloca nel Comune di PINEROLO (TO), ad Abbadia Alpina, tra Via Nazionale e Via Madonnina, ed appartiene all' Area Normativa "A 1.2" del P.R.G.C.

Il sito oggetto dello studio appartiene totalmente alla *Classe 1* di edificabilità della Carta d'idoneità all'Utilizzazione Urbanistica del P.R.G.C. vigente poiché costituito da "porzioni di territorio dove le condizioni di pericolosità geomorfologica sono tali da non porre limitazioni alle scelte urbanistiche: gli interventi sia pubblici che privati sono, di norma, consentiti nel rispetto delle prescrizioni dei D.M. 11/03/1988, 14/01/2008 e 17/01/2018".

## ESTRATTO DELLA CARTA DI SINTESI DEL P.R.G.C. (VARIANTE "PONTE")



Al fine di definire la natura geotecnica dei terreni in sito, questo studio si avvale dei dati provenienti da una specifica campagna di indagini geognostiche (due sondaggi a carotaggio continuo spinti a – 10.0 m da p.c.) e indagine geofisica, eseguite dalla Società EUROGEO S.r.l. di Cinisello Balsamo (MI), nel periodo 10 – 11 Novembre 2011. In questi due sondaggi sono state, inoltre, eseguite sei Prove Penetrometriche Dinamiche in foro (SPT) e sono anche stati prelevati sei campioni di terreno da sottoporre ad analisi geotecniche di laboratorio.


La campagna d'indagine geognostica è stata, inoltre, completata con l'esecuzione di una Prova Masw nei pressi del sondaggio S1 finalizzata a definire in modo corretto la categoria di suolo di fondazione.

La presenza nei pressi del sondaggio S1 di un vecchio pozzo perfettamente funzionante ha consentito un adeguato monitoraggio della falda acquifera e la lettura periodica del livello statico della superficie piezometrica.

Riepilogando, nel corso di questo studio vengono pertanto analizzati i seguenti aspetti:

- Definizione del quadro di assetto geologico morfologico ed idrogeologico dell'area d'interesse e del suo intorno significativo;
- Definizione della natura geotecnica dei terreni in situ;
- Definizione delle azioni sismiche di progetto ai sensi delle NTC 17/01/2018.

Il Comune di **PINEROLO** (TO), precedentemente **classificato in Zona sismica 2** (classificazione del 1984), è stato **Classificato in Zona sismica 3S** con D.G.R. n° 11 – 13058 del 19/01/2010.



# 2. INQUADRAMENTO GEOGRAFICO

L'area in studio si colloca ad Abbadia Alpina, tra Via Nazionale e Via Madonnina, nel Comune di Pinerolo (TO).

## **LOCALIZZAZIONE INTERVENTO**



| COORDINATE GEOGRAFICHE    | LATITUDINE | LONGITUDINE |
|---------------------------|------------|-------------|
| AREA D'INTERVENTO (ED 50) | 44.887126  | 7.307957    |

# 3. INQUADRAMENTO GEOLOGICO REGIONALE

\_\_\_\_\_

Il contesto geologico in cui si colloca il territorio comunale di Pinerolo è rappresentato dal **Massiccio Dora – Maira**, unità strutturale alpina pretriassica appartenente, come elemento meridionale, al sistema Pennidico, affiorante più a Nord nelle culminazioni assiali del Gran Paradiso e del Monte Rosa, e dalle **Formazioni superficiali**.

Il substrato roccioso pretriassico del Dora - Maira è costituito da due complessi:

- Complesso grafitico del Pinerolese (Carbonifero) costituito da micascisti grafitici,
   quarziti, metaconglomerati e metabasiti;
- Complesso intrusivo (Pre-Carbonifero) costituito da gneiss occhialini e meta graniti.

Le Formazioni superficiali del Pinerolese sono costituite da quattro depositi fondamentali ascrivibili al Quaternario:

- Depositi fluvio torrentizi attuali e recenti (Olocene). Sono i depositi maggiormente rappresentati in pianura e sono costituiti prevalentemente da ghiaie ciottolose e da ghiaie sabbioso – limose con locali livelli limo – sabbiosi;
- Depositi torrentizi antichi (Pleistocene medio). Questi depositi costituiscono lembi di superfici terrazzate lungo il versante destro della bassa Val Lemina e un'estesa superficie terrazzata in corrispondenza di Riva di Pinerolo. Sono costituiti da ghiaie ciottolose, molto alterate, ricoperte localmente da paleosuolo limo – argilloso di colore rossastro;
- Depositi eluviali ed eluvio colluviali (Olocene). Sono costituiti da limi sabbiosoargillosi e rappresentano il prodotto della disgregazione chimico – fisica del substrato litoide;
- Depositi fluvio lacustri (Pliocene sup. Pleistocene inf.). Questi depositi si rinvengono nel sottosuolo della pianura a profondità superiori a 20 m e sono costituiti da argille e limi argillosi

# 4. CARATTERIZZAZIONE DEL VOLUME GEOLOGICO SIGNIFICATIVO

#### 4.1 LITOSTRATIGRAFIA

L'indagine geognostica eseguita nell'area di proprietà nell'autunno del 2011 aveva consentito di verificare la natura dei depositi presenti, identificabili come **Depositi fluvio – torrentizi recenti**, di età ascrivibile all' Olocene (Quaternario).

La litofacies prevalente è quella ghiaioso – sabbiosa, con ciottoli e trovanti di gneiss e pietre verdi (anche di diametro superiore a 30 cm), ricoperta da uno strato di terreno vegetale limo – argilloso di colore bruno, potente circa 20 ÷ 30 cm, dove non è presente terreno di riporto eterogeneo.

La situazione litostratigrafica dell'area si può così sinteticamente riassumere:

| Profondità<br>dal p.c. (m) | Descrizione litologica                                                                                                                            |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00 – 1.00                | Al di sotto di 0.20 – 0.30 m di terreno vegetale, limo – argilloso, di colore bruno, terreno di riporto sabbioso – ghiaioso con resti lateritici. |
| 1.00 – 1.70                | Limo e sabbia fine di colore grigio nel S1; Sabbia e ghiaia nel S2.                                                                               |
| 1.70 – 3,00                | Sabbia medio – fine con ghiaia eterometrica, debolmente limosa, di colore marrone – giallastro.                                                   |
| 3.00 – 10.00               | Ghiaia eterometrica, Ø max 6 cm, con sabbia medio – fine e limo di colore marrone – rossastro, con ciottoli di gneiss e pietre verdi.             |

Il livello statico della falda acquifera, misurato nei giorni 24 ottobre, 7 e 14 novembre 2011 nel pozzo per acqua esistente tra S1 e S2, si colloca alle seguenti profondità dal piano campagna:

- 24/10/2011: 7.90 m da p.c.
- 07/11/2011: 6.70 m da p.c.
- 14/11/2011: 5.85 m da p.c.

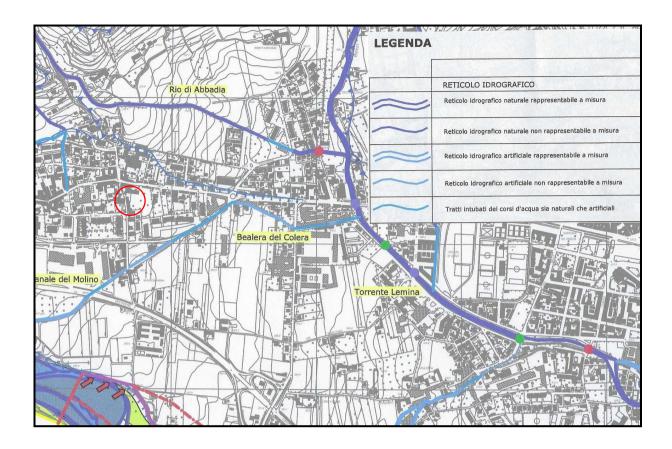
#### 4.2 GEOMORFOLOGIA

Nel corso del sopralluogo del 24/10/2011, si erano esaminate le condizioni geomorfologiche ed idrogeologiche dell'area in studio e delle zone circostanti.

L'area in esame ed il suo intorno significativo sono inseriti in un ambito pianeggiante, pressoché interamente antropizzato ed urbanizzato.

Sulla base di tali premesse risulta molto improbabile definire con adeguata precisione i caratteri dell'assetto geomorfologico originario.

La natura alluvionale di questo settore di pianura porta, comunque, a ritenere plausibile l'originaria presenza di forme di accumulo e di erosione fluviale quali i terrazzi, probabilmente associabili a forme di drenaggio relitto, non più legate alla dinamica attuale (paleoalvei) ed a corpi di spandimento, quasi sicuramente di depositi fini, associabili a fasi di bassa energia o di ritiro al termine dei periodici episodi di alluvionamento.


Tale assetto evolutivo ha dato origine ad una certa stratificazione degli orizzonti di sedimentazione fluviale, giustificando quindi l'alternanza dei livelli a granulometria talora alquanto variabile, osservabili nelle colonne stratigrafiche dei sondaggi condotti in zona.

#### 4.3 IDROLOGIA E IDROGEOLOGIA

Per quanto concerne l'assetto idrogeologico locale, l'andamento piuttosto regolare della pianura impone gradienti di pendenza anch'essi alquanto costanti e quindi si può osservare come tutte le direttrici di deflusso seguano un andamento piuttosto parallelo e terminante nel Torrente Chisone.

In analogia con tali direzioni di deflusso anche la rete di canali e semplici fossi irrigui si muove con direzione prevalente da Nord a Sud.

Non vi sono, tuttavia, corsi d'acqua nelle immediate vicinanze dell'area in esame.



La circolazione sotterranea si manifesta in forma di acque di falda libera, con direzione di deflusso prevalente da W a E (andamento delle linee di flusso).

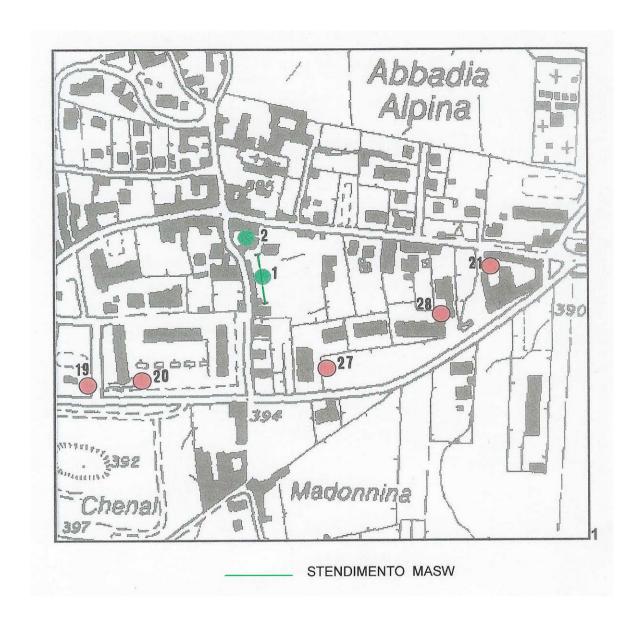
Il livello di soggiacenza della falda freatica si colloca a profondità dell'ordine di  $6.0 \div 7.0$  m da p.c., come appurato dalle misurazioni freatimetriche eseguite nei sondaggi terebrati nell'area compresa tra Via Nazionale e Via Giustetto.

## 5. INDAGINI GEOGNOSTICHE E GEOTECNICHE

## 5.1 INDAGINI GEOGNOSTICHE DI CAMPAGNA

Al fine di definire la natura geotecnica dei terreni in sito, questo studio si avvale:

- dei dati provenienti dai due sondaggi, a carotaggio continuo e spinti a 10.0 m da p.c., eseguiti nell'area in studio dalla Soc. EUROGEO SRL di Cinisello Balsamo nel periodo 10 – 11 novembre 2011;
- dei dati acquisiti con le stratigrafie di sondaggi pregressi eseguiti in passato in un intorno significativo.


Nei due ultimi sondaggi del novembre 2011 erano state, inoltre, eseguite sei prove penetrometriche dinamiche (SPT) ed erano anche stati prelevati sei campioni di terreno da sottoporre ad analisi geotecniche di laboratorio.

La campagna d'indagine geognostica era stata, inoltre, completata con l'esecuzione di una Prova MASW nei pressi del sondaggio S1 finalizzata a definire in modo corretto la categoria di suolo di fondazione.

La presenza nei pressi del sondaggio S1 di un vecchio pozzo perfettamente funzionante ha consentito un adeguato monitoraggio della falda acquifera e la lettura periodica del livello statico della superficie piezometrica.

La posizione esatta delle due perforazioni eseguite nell'area dall'Eurogeo srl e quella delle precedenti perforazioni eseguite nelle vicinanze è indicata nella planimetria allegata qui di seguito:

# UBICAZIONE INDAGINI GEOGNOSTICHE (2011 E PREGRESSE )



Le stratigrafie del terreno, ricavate dai suddetti sondaggi, sono allegate al termine della relazione e contengono anche i dati delle prove penetrometriche in foro (S.P.T.)

Per quanto concerne la caratterizzazione litostratigrafica del sito si rimanda a quanto indicato nel capitolo 4.1 della presente relazione.

## **PROVE S.P.T. (Standard Penetration Test)**

Nel corso dei due sondaggi del 2011 e di quelli precedenti sono state eseguite n° 21 prove S.P.T. al fine di determinare la resistenza del terreno ed il suo grado di addensamento, desumendo lo stesso dal valore di resistenza dinamica alla penetrazione di un tubo a punta chiusa, infisso a percussione tramite un maglio del peso di 63,5 Kg, con altezza di caduta di 76,2 cm (penetrometro mod. "Meardi – A.G.I.).

Il parametro Nspt (numero di colpi/30 cm) è il più efficace metodo a disposizione per ricavare, indirettamente, le caratteristiche meccaniche di un terreno quali la capacità portante e la compressibilità, in assenza di campioni indisturbati da sottoporre ad analisi geotecniche di laboratorio.

Il numero dei colpi necessari all'avanzamento del penetrometro durante l'esecuzione delle prove è indicato nelle stratigrafie dei sondaggi.

I valori di  $N_{\rm spt}$  possono essere associati, mediante opportune correlazioni, a parametri essenziali del terreno, quali Dr% (densità relativa),  $\varphi$ ' (angolo di resistenza al taglio) ed E' (modulo di deformazione). E' così possibile giungere ad una valutazione quantitativa, oltre che qualitativa, del comportamento dei terreni.

## N.B. <u>I valori di N<sub>spt</sub> a Rifiuto sono stati cautelativamente assimilati a 50 colpi/30 cm</u>.

## **DENSITA' RELATIVA (Dr%)**

In base alle correlazioni di Bazaraa (1967), i valori di densità relativa (Dr%), dei terreni di fondazione, possono essere determinati con le formule riportate di seguito.

$$Dr\% = \sqrt{\frac{Nspt}{20 \cdot (1 + 4, 1 \cdot \sigma_{v0})}}$$
  $Dr\% = \sqrt{\frac{Nspt}{20 \cdot (3, 24 + 1, 024 \cdot \sigma_{v0})}}$ 

Per i calcoli è stato considerato il peso di volume cautelativo  $\gamma$  = 20,0 kN/m³, facendo riferimento ai risultati delle prove di laboratorio eseguite sui sondaggi S1 e S2.

I valori ottenuti sono riportati in tabella 1.

**TAB. 1** 

|           | PROF.       | PROFONDITA' |                  |                  |     |                 |
|-----------|-------------|-------------|------------------|------------------|-----|-----------------|
| SONDAGGIO | FALDA       | D'INDAGINE  | N <sub>SPT</sub> | σ' <sub>ν0</sub> | Dr  | STATO DI        |
|           | (m da p.c.) | (m da p.c.) |                  | (KN/m²)          | (%) | ADDENSAMENTO    |
|           |             | 3.0         | 16               | 60.0             | 48  | MEDIAMENTE      |
| 4         | 5.85        |             |                  |                  |     | ADDENSATO       |
| 1         | 0.00        | 6.0         | 59               | 118.8            | 81  | MOLTO ADDENSATO |
|           |             | 9.0         | 50               | 154.8            | 72  | MOLTO ADDENSATO |

|           | PROF.       | PROFONDITA' |                  |                  |     |                 |
|-----------|-------------|-------------|------------------|------------------|-----|-----------------|
| SONDAGGIO | FALDA       | D'INDAGINE  | N <sub>SPT</sub> | σ' <sub>v0</sub> | Dr  | STATO DI        |
|           | (m da p.c.) | (m da p.c.) |                  | (KN/m²)          | (%) | ADDENSAMENTO    |
|           |             | 3.0         | 50               | 60.0             | 85  | MOLTO ADDENSATO |
| 2         | 5.85        | 6.0         | 50               | 118.8            | 75  | MOLTO ADDENSATO |
|           |             | 9.0         | 50               | 154.8            | 72  | MOLTO ADDENSATO |

## CARATTERISTICHE DI RESISTENZA DEI TERRENI

Nel caso dei terreni granulari la resistenza degli stessi viene espressa dall'angolo d'attrito interno, più propriamente definito **angolo di resistenza al taglio**, indicato in funzione degli sforzi efficaci ( $\phi$ ').

Il valore di  $\phi$ ' può essere desunto attraverso il parametro  $N_{\text{spt}}$ , utilizzando il metodo proposto dal <u>Road Bridge Specification</u>, che prevede l'utilizzo della formula:

$$\varphi' = \sqrt{(15 \cdot Nspt)} + 15$$

In tabella 2 si espongono i risultati ottenuti.

TAB. 2

|           | PROF.       | PROFONDITA' |                  |                  |     |
|-----------|-------------|-------------|------------------|------------------|-----|
| SONDAGGIO | FALDA       | D'INDAGINE  | N <sub>SPT</sub> | σ' <sub>v0</sub> | φ'  |
|           | (m da p.c.) | (m da p.c.) |                  | (KN/m²)          | (°) |
|           |             | 3.0         | 16               | 60.0             | 30  |
| 1         | 5.85        | 6.0         | 59               | 118.8            | 45  |
|           |             | 9.0         | 50               | 154.8            | 42  |

|           | PROF.       | PROFONDITA' |           |                  |     |
|-----------|-------------|-------------|-----------|------------------|-----|
| SONDAGGIO | FALDA       | D'INDAGINE  | $N_{SPT}$ | σ' <sub>v0</sub> | φ'  |
|           | (m da p.c.) | (m da p.c.) |           | (KN/m²)          | (°) |
|           |             | 3.0         | 50        | 60.0             | 42  |
| 2         | 5.85        | 6.0         | 50        | 118.8            | 42  |
|           |             | 9.0         | 50        | 154.8            | 42  |

## **CARATTERISTICHE DI DEFORMAZIONE DEI TERRENI**

La deformazione del terreno è indicata dal modulo di deformazione E', calcolato nell'ambito delle profondità interessate: il valore di E' può essere desunto sia dalla densità relativa Dr %, sia dai valori di  $N_{sot}$ .

Servendosi dei valori di  $N_{spt}$ , secondo la correlazione più cautelativa di D'Apollonia (1970), che associa direttamente il valore di  $N_{spt}$  al suddetto modulo di deformazione, nel caso di sabbie normalmente caricate e ghiaie, si ha:

$$E' = 216 + 10,6'N_{spt}$$

I risultati sono esposti in tabella 3.

Tab. 3

|           | PROF.       | PROFONDITA' |                  |                  |                      |
|-----------|-------------|-------------|------------------|------------------|----------------------|
| SONDAGGIO | FALDA       | D'INDAGINE  | N <sub>SPT</sub> | σ' <sub>ν0</sub> | E'                   |
|           | (m da p.c.) | (m da p.c.) |                  | (KN/m²)          | (KN/m <sup>2</sup> ) |
|           |             | 3.0         | 16               | 60.0             | 38560                |
| 1         | 5.85        | 6.0         | 59               | 118.8            | 84140                |
|           |             | 9.0         | 50               | 154.8            | 74600                |

| SONDAGGIO | PROF. FALDA (m da p.c.) | PROFONDITA' D'INDAGINE (m da p.c.) | N <sub>SPT</sub> | თ' <sub>v0</sub><br>(KN/m²) | E'<br>(KN/m²) |
|-----------|-------------------------|------------------------------------|------------------|-----------------------------|---------------|
|           |                         | 3.0                                | 50               | 60.0                        | 74600         |
| 2         | 5.85                    | 6.0                                | 50               | 118.8                       | 74600         |
|           |                         | 9.0                                | 50               | 154.8                       | 74600         |

I valori di E' risultano coerenti con la tipologia di terreni incontrati nei tre sondaggi: infatti, sono piuttosto ricorrenti per i terreni ghiaioso - sabbiosi.

#### 5.2 INDAGINI GEOTECNICHE DI LABORATORIO

Le indagini geotecniche di laboratorio sono state condotte sui sei campioni rimaneggiati dei sondaggi S1 e S2 del novembre 2011.

Per i risultati delle analisi geotecniche di laboratorio si rimanda ai certificati delle singole prove eseguite che sono allegati al termine della relazione.

Si riassumono, qui, brevemente i risultati:

| SONDAGGI<br>N° | CAMPIONI<br>N° | PROFONDITA'<br>m | PESO DI<br>VOLUME γ<br>(KN/m³) | PASSANTE<br>ASTM 200 | CLASSIFICAZIONE                     |
|----------------|----------------|------------------|--------------------------------|----------------------|-------------------------------------|
|                | CR1            | 3.0 – 3.4        | 18.54                          | 14.22                | SABBIA DEBOLMENTE LIMOSA            |
| 1              | CR2            | 6.0 - 6.4        | 20.18                          | 8.77                 | GHIAIA SABBIOSA DEBOLMENTE LIMOSA   |
|                | CR3            | 9.0 – 9.4        | 20.48                          | 5.07                 | GHIAIA SABBIOSA DEBOLMENTE LIMOSA   |
|                | CR1            | 3.0 – 3.4        | 20.34                          | 7.42                 | GHIAIA CON SABBIA DEBOLMENTE LIMOSA |
| 2              | CR2            | 6.0 - 6.4        | 20.46                          | 6.78                 | GHIAIA CON SABBIA DEBOLMENTE LIMOSA |
|                | CR3            | 9.0 – 9.4        | 20.74                          | 5.73                 | GHIAIA CON SABBIA DEBOLMENTE LIMOSA |

#### **ANALISI GRANULOMETRICHE**

Le analisi sono state condotte mediante vagliatura per via umida e, per S1 – CR1, anche mediante sedimentazione con areometro.

I materiali analizzati dei sei campioni presentano una percentuale di frazione fine, passante al vaglio n° 200 mesh, compresa tra 5.07 % e 14.22 %, con valori più elevati di passante in corrispondenza dei livelli sabbioso – limosi.

## **DETERMINAZIONE DEL PESO DI VOLUME**

Mediante un cilindro d'acciaio a bordo tagliente sono stati prelevati in laboratorio n° 2 provini per ogni campione allo stato naturale.

I valori ottenuti dalla media indicano un peso di volume dei campioni analizzati oscillante intorno al valore di  $\gamma = 20.1 - 20.7$  KN/m³, ad eccezione del campione CR1 del S1 che ha un peso di volume più basso ( $\gamma = 18.54$ ) legato alla presenza di un livello sabbioso – limoso meno addensato degli altri strati.

## 6. ANALISI DELLA PERICOLOSITA' SISMICA

#### 6.1 - PARAMETRI DI RIFERIMENTO

Il quadro sismico locale è definito sulla base delle indicazioni contenute nel D.M. 17/01/2018 e nella D.G.R. n° 11 - 13058 del 19/01/2010 di aggiornamento ed adeguamento dell' Ordinanza n° 3274 del 2003.

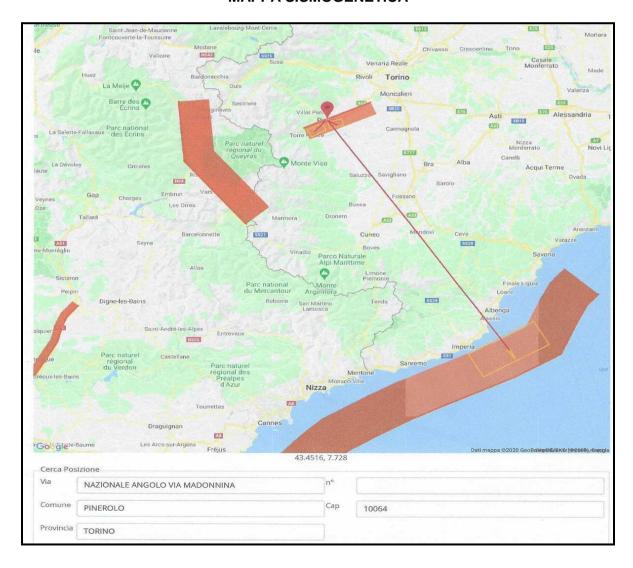
Il Comune di **PINEROLO** (TO), precedentemente **classificato in Zona sismica 2** (classificazione del 1984), è stato **Classificato in Zona sismica 3S** con D.G.R. n° 11 – 13058 del 19/01/2010.

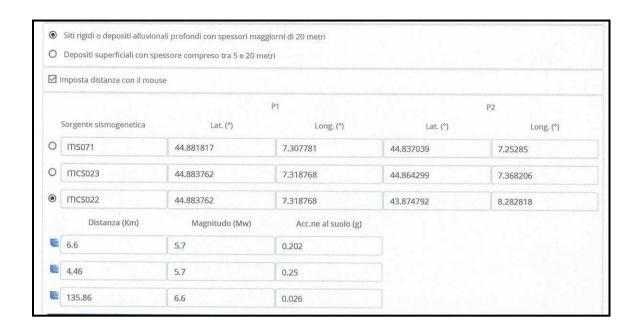
## PROVA MASW (Multichannel Analysis of Surface Waves)

La prova geofisica, mediante stendimento sismico MASW, è stata eseguita in data 07/11/2011: la sua utilità è quella di definire la categoria di profilo stratigrafico del suolo di fondazione, in associazione con la grandezza del parametro Vs30.

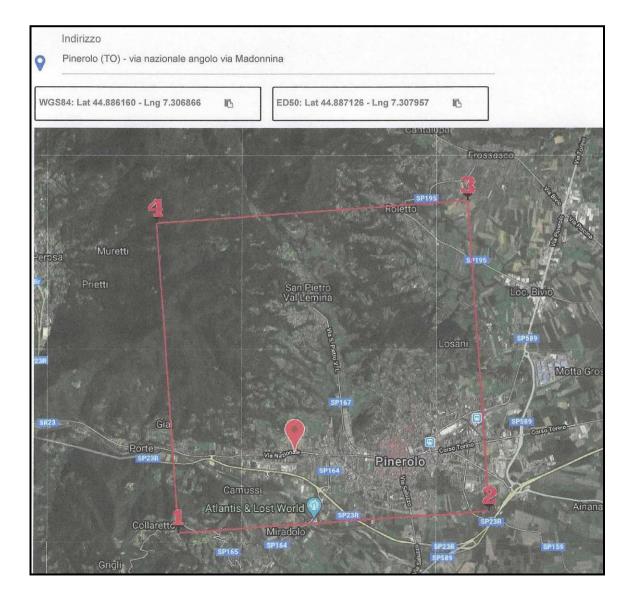
Il parametro Vs 30 rappresenta la velocità equivalente di propagazione delle onde di taglio, valutata entro i primi 30 metri dal piano di posa delle fondazioni.

Per questo sito si sono determinate velocità di Vs<sub>30</sub> = 419 m/s


Il valore di Vs30, così determinato, viene messo in relazione con le indicazioni contenute nel testo integrato dell'Allegato 2 all'Ordinanza n. 3274, come modificato dall'OPCM n. 3431 del 03/05/05 e, successivamente, dal D.M. 17/01/2018 (NTC).


In tal modo è possibile assegnare al terreno indagato uno degli orizzonti di suolo di fondazione, indicati nella tabella seguente:

| <b>Tab. 3.2.II</b> – Ca | Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Categoria               | Caratteristiche della superficie topografica                                                                                                                                                                                                                                                               |  |  |  |  |  |
| A                       | Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.                                             |  |  |  |  |  |
| В                       | Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-<br>stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da<br>valori di velocità equivalente compresi tra 360 m/s e 800 m/s.                                    |  |  |  |  |  |
| С                       | Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.   |  |  |  |  |  |
| D                       | Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s. |  |  |  |  |  |
| Е                       | Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.                                                                                                                                    |  |  |  |  |  |


## STORIA SISMICA DEL SITO

## **MAPPA SISMOGENETICA**





## PERICOLOSITÀ SISMICA DI BASE



Vita nominale (Vn): 50 [anni]

Classe d'uso: II Coefficiente d'uso (Cu): 1

Periodo di riferimento (Vr): 50 [anni]
Periodo di ritorno (Tr) SLO: 30 [anni]
Periodo di ritorno (Tr) SLD: 50 [anni]
Periodo di ritorno (Tr) SLV: 475 [anni]
Periodo di ritorno (Tr) SLC: 975 [anni]

Tipo di interpolazione: Media ponderata

Coordinate geografiche del punto

Latitudine (WGS84): 44,886160 [°] Longitudine (WGS84): 7,306866 [°] Latitudine (ED50): 44,887126 [°] Longitudine (ED50): 7,307957 [°]

Coordinate dei punti della maglia elementare del reticolo di riferimento che contiene il sito e valori della distanza rispetto al punto in esame:

| Punto | ID    | Latitudine (ED50) | Longitudine (ED50) | Distanza |
|-------|-------|-------------------|--------------------|----------|
|       |       | [°]               | [°]                | [m]      |
| 1     | 14453 | 44,873960         | 7,281815           | 2527,0   |
| 2     | 14454 | 44,877590         | 7,352042           | 3631,7   |
| 3     | 14232 | 44,927460         | 7,347024           | 5438,8   |
| 4     | 14231 | 44,923830         | 7,276693           | 4766,4   |

## Parametri sismici

Categoria sottosuolo: B Categoria topografica: T1 Periodo di riferimento: 50 anni

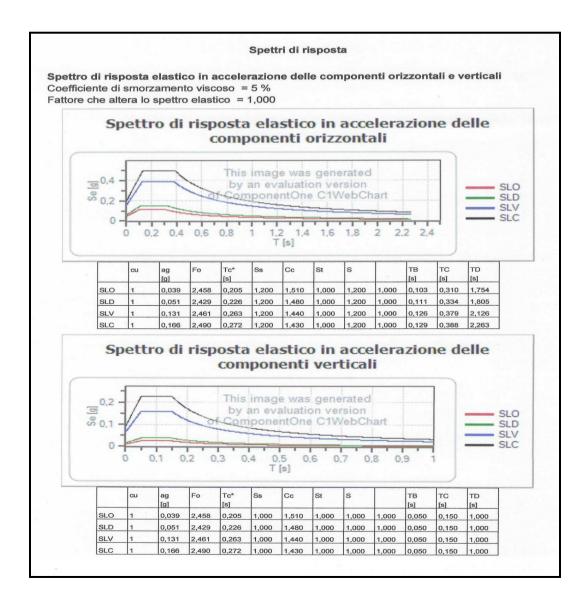
Coefficiente cu: 1

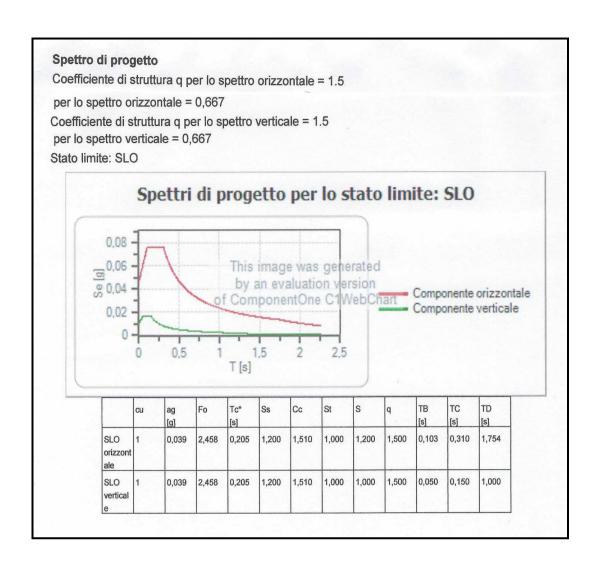
|                                      | Prob.<br>superamento<br>[%] | Tr<br>[anni] | ag<br>[g] | Fo [-] | Tc*<br>[s] |
|--------------------------------------|-----------------------------|--------------|-----------|--------|------------|
| Operatività<br>(SLO)                 | 81                          | 30           | 0,039     | 2,458  | 0,205      |
| Danno (SLD)                          | 63                          | 50           | 0,051     | 2,429  | 0,226      |
| Salvaguardia<br>della vita (SLV)     | 10                          | 475          | 0,131     | 2,461  | 0,263      |
| Prevenzione<br>dal collasso<br>(SLC) | 5                           | 975          | 0,166     | 2,490  | 0,272      |

## Coefficienti Sismici Stabilità dei pendii

|     | Ss [-] | Cc [-] | St [-] | Kh [-] | Kv [-] | Amax [m/s²] | Beta [-] |
|-----|--------|--------|--------|--------|--------|-------------|----------|
| SLO | 1,200  | 1,510  | 1,000  | 0,009  | 0,005  | 0,454       | 0,200    |
| SLD | 1,200  | 1,480  | 1,000  | 0,012  | 0,006  | 0,603       | 0,200    |
| SLV | 1,200  | 1,440  | 1,000  | 0,038  | 0,019  | 1,547       | 0,240    |
| SLC | 1,200  | 1,430  | 1,000  | 0,048  | 0,024  | 1,951       | 0,240    |

20

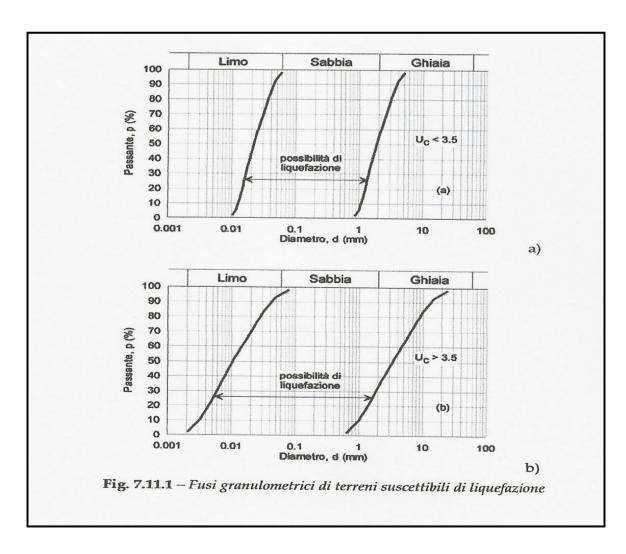

La media pesata dei valori di a<sub>q</sub>, F<sub>o</sub> e T\*<sub>c</sub> per i due T<sub>R</sub> corrisponde a:


|                 | T <sub>R</sub> = 475 anni | T <sub>R</sub> = 975 anni |
|-----------------|---------------------------|---------------------------|
| $a_g$           | 0.131                     | 0.166                     |
| F <sub>o</sub>  | 2.461                     | 2.490                     |
| T* <sub>c</sub> | 0.263                     | 0.272                     |

## L'accelerazione orizzontale massima attesa al sito (a<sub>max</sub>) è uguale a:

$$a_{max} = S_s \times S_T \times a_q$$

|     | T <sub>R</sub> | a <sub>max</sub> |
|-----|----------------|------------------|
| SLV | 475 anni       | 0.157g           |
| SLC | 975 anni       | 0.199g           |






#### 6.2 - VERIFICA ALLA LIQUEFAZIONE

Come specificato dalle NTC 17/01/2018 al par. 7.11.3.4.2, la verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- 1. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1 g;
- 2. profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali:
- 3. depositi costituiti da sabbie pulite con resistenza penetro metrica normalizzata  $(N_1)_{60}$  > oppure  $q_{c1N}$  > 180 dove  $(N_1)_{60}$  è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 KPa e  $q_{c1N}$  è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 KPa;
- distribuzione granulometrica esterna alle zone indicate nella Fig. 7.11.1(a) nel caso di terreni con coefficiente di uniformità U<sub>c</sub> < 3,5 e in Fig. 7.11.1(b) nel caso di terreni con coefficiente di uniformità U<sub>c</sub> > 3,5.



Poiché il sito in studio non ricade in nessuna delle quattro circostanze indicate in precedenza, è necessario procedere alla verifica a liquefazione.

La valutazione del potenziale di liquefazione è stata condotta secondo il **Metodo semplificato**, proposto da Youd e Idris (2001) che, utilizzando i valori di resistenza dinamica del terreno ricavati da prove SPT, verifica che il fattore di sicurezza **Fs**, inteso come il rapporto tra la resistenza al taglio mobilitata (**R**) e lo sforzo di taglio indotto dal sisma (**T**), sia maggiore o uguale a 1,3.

|                           |                                         | Metodo                                                                                                                                                                  | semplifica                       | to                                                                                        |           |  |
|---------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|-----------|--|
|                           |                                         | Metodo di                                                                                                                                                               | Youd e Idris (200                | 1)                                                                                        |           |  |
| PARA                      | AMETRI:                                 | The second second                                                                                                                                                       |                                  |                                                                                           |           |  |
| =                         | 1,8                                     | g/cm <sup>3</sup>                                                                                                                                                       |                                  |                                                                                           |           |  |
| =                         | 0,54                                    |                                                                                                                                                                         | R=                               | Resistenza al taglio mobilita                                                             | ta        |  |
| =                         | 0,54                                    | kg/cm <sup>2</sup>                                                                                                                                                      | T=                               | Sforzo di taglio indotto dal si                                                           | sma       |  |
| =                         | 300                                     | cm                                                                                                                                                                      |                                  |                                                                                           |           |  |
| =                         | 16                                      |                                                                                                                                                                         |                                  |                                                                                           |           |  |
| =                         | 500                                     | cm                                                                                                                                                                      |                                  |                                                                                           |           |  |
| =                         | 1,0                                     |                                                                                                                                                                         |                                  |                                                                                           |           |  |
| =                         | 0,0                                     |                                                                                                                                                                         |                                  |                                                                                           |           |  |
| =                         | 3                                       | <u> </u>                                                                                                                                                                |                                  |                                                                                           |           |  |
|                           | FORMULE:                                |                                                                                                                                                                         |                                  | R                                                                                         | ISULTATI: |  |
| =                         | N <sub>SPT</sub> *(1,7/(σ <sub>νσ</sub> | 5'+0,7))+N <sub>f</sub>                                                                                                                                                 | ( ) = (                          | 21,93548387                                                                               | Na        |  |
| =                         |                                         | 0                                                                                                                                                                       |                                  |                                                                                           |           |  |
| =                         | 0,2565* [0,16*Ra                        | adQNa+(0,2133*RadQN                                                                                                                                                     | la) <sup>14</sup> ] =            | 0,395535916                                                                               | R         |  |
| =                         | 0,65*((a <sub>max</sub> /g              | )*(σ <sub>vo</sub> /σ <sub>vo'</sub> ))*r <sub>d</sub>                                                                                                                  | =                                | 0,095262375                                                                               | T         |  |
| $a_{\text{max}}/g = 0,15$ |                                         |                                                                                                                                                                         |                                  |                                                                                           |           |  |
| =                         | 0,97705                                 |                                                                                                                                                                         |                                  |                                                                                           |           |  |
|                           |                                         |                                                                                                                                                                         |                                  |                                                                                           |           |  |
|                           |                                         | PARAMETRI:  = 1,8 = 0,54 = 0,54 = 300 = 16 = 500 = 1,0 = 0,0 = 3  FORMULE: = N <sub>SPT</sub> *(1,7/(σ <sub>VC</sub> ) = 0,2565* [0,16*Ra = 0,65*((a <sub>max</sub> /g) | (da prove  Metodo di  PARAMETRI: | (da prove dinamiche SF  Metodo semplifica  Metodo di Youd e Idris (200  PARAMETRI:    1,8 |           |  |

Essendo Fs = 4,15 e, quindi, maggiore di 1,3, il fattore di sicurezza è verificato.

## 7. ATTENDIBILITA' DEL MODELLO GEOLOGICO

In relazione con la qualità e la quantità delle informazioni reperite e con la complessità geologico – strutturale dell'area in studio, si può qualificare il modello geologico di riferimento attraverso una scala di attendibilità a cinque valori (da 1 = scarso a 5 = ottimo).

Nel caso in esame, il valore di attendibilità del modello geologico si può considerare pari a **5**, cioè **ottimo**, poiché l'area è stata oggetto di indagine geognostica diretta (n° 2 sondaggi a carotaggio continuo, spinti a – 10.0 m da p.c., con 6 prove S.P.T. in foro) ed un'indagine geofisica (Prova MASW) per individuare la Vs 30 dei terreni presenti e definire la categoria di suolo di fondazione.

Inoltre, in un intorno significativo, sono stati individuati altri 5 sondaggi realizzati in precedenza nelle aree circostanti la zona in esame per verificare la omogeneità delle informazioni sia in senso verticale che in quello orizzontale: le stratigrafie dei 5 sondaggi e le relative prove S.P.T. eseguite a suo tempo sono perfettamente compatibili con le stratigrafie dei due sondaggi S1 e S2.

La compatibilità dell' opera in progetto con il contesto naturale ospitante è certamente elevata poiché gli elementi di pericolosità naturale presenti nell'area di progetto sono essenzialmente riconducibili a criticità di tipo sismico (Il Comune di **PINEROLO** (TO) precedentemente **classificato in Zona sismica 2** (classificazione del 1984), è stato **Classificato in Zona sismica 3S** con D.G.R. n° 11 – 13058 del 19/01/2010).

La falda acquifera, misurata più volte nel pozzo ad uso irriguo presente all'interno dell'area di proprietà nei pressi del S1, oscilla tra -5.85 m e -7.90 m da p.c. e risulta, quindi, ininfluente per il piano di fondazione delle costruzioni previste dal progetto che si colloca a quota -3.00 m da p.c., con un franco di quasi tre metri.

## 8. PARAMETRI GEOTECNICI DI PROGETTO

## 8.1 VALORI CARATTERISTICI

Come esplicitato nelle N.T.C. 17/01/2018, per valore caratteristico di un parametro geotecnico deve intendersi una stima ragionata e cautelativa del valore del parametro nello stato limite considerato.

Per questa analisi il valore caratteristico viene ricavato per ciascun parametro geotecnico, funzionale all'analisi allo SLU.

Per valore caratteristico si intende il 5° percentile della distribuzione di un dato campione di misure, del parametro geotecnico di riferimento, ossia quel valore che ha una probabilità di essere superato pari al 95%.

Va da se che tale approccio contiene implicitamente un fattore di sicurezza.

I parametri geotecnici di riferimento sono quelli derivanti dalle correlazioni dirette con i valori di N<sub>SPT</sub> ed esposti nel cap. 5, tuttavia per semplicità di lettura essi sono riepilogati in tabella 8.1.

Tab. 8.1 – Parametri geotecnici correlati direttamente con i valori minori di  $N_{\text{SPT}}$ , per ciascuna profondità di prova.

| PROFONDITA' (m da p.c.) | ANGOLO DI<br>RESISTENZA AL<br>TAGLIO<br>φ' | MODULO DI<br>DEFORMAZIONE<br>E' (KN/m²) | PESO DI VOLUME<br>NATURALE<br>γ (KN/m³) |
|-------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|
| 3.0                     | 30°                                        | 38560                                   | 18.54                                   |
| 6.0                     | 42°                                        | 74600                                   | 20.18                                   |
| 9.0                     | 42°                                        | 74600                                   | 20.74                                   |

I valori caratteristici, stima cautelativa del valore che influenza l'insorgere dello SLU, sono ricavati tramite le seguenti correlazioni:

per il dimensionamento del valore caratteristico di φ' si è usata la relazione:

$$\varphi_k = x_m \cdot (1 - K \cdot \sigma/x_m)$$

dove:  $\phi_k$  = valore caratteristico ( $\phi k$ ) dell'angolo di resistenza al taglio misurato ( $\phi'$ );  $x_m$  = valore medio della popolazione;  $\sigma$  = deviazione standard della popolazione; N = numero di dati del campione.

Calcolo del valore medio della popolazione  $(x_m)$  con N=3 (numero dati):

$$x_m = (30^\circ + 42^\circ + 42^\circ)/3 = 114/3 = 38^\circ$$

Calcolo della deviazione standard σ:

$$\sigma = \sqrt{48} = 6.93$$

Calcolo del valore caratteristico:

$$\phi_k = x_m \cdot (1 - K \cdot \sigma/x_m) = 38 \cdot (1 - 1.645 \cdot 6.93/38) = 38 \cdot 0.7 = 26.6^{\circ}$$

per il dimensionamento del valore caratteristico di E' si è usata la media aritmetica:

$$m_a = (38560 + 74600 + 74600)/3 = 62586$$

$$E_k = 62586$$

per il dimensionamento del valore caratteristico di γ si è usata la relazione:

$$\gamma_k = x_m \cdot (1 - K \cdot \sigma/x_m)$$

dove:  $\gamma_k$  = valore caratteristico ( $\gamma k$ ) del peso di volume misurato ( $\gamma$ );  $x_m$  = valore medio della popolazione;  $\sigma$  = deviazione standard della popolazione; N = numero di dati del campione.

Calcolo del valore medio della popolazione  $(x_m)$  con N = 3 (numero dati):

$$x_m = (18.54 + 20.18 + 20.74)/3 = 59.46/3 = 19.82$$

Calcolo della deviazione standard σ:

$$\sigma = \sqrt{1.31} = 1.14$$

Calcolo del valore caratteristico:

$$\gamma_k = \mathbf{x}_m \cdot (1 - \mathbf{K} \cdot \sigma/\mathbf{x}_m) = 19.82 \cdot (1 - 1.645 \cdot 1.14/19.82) = 19.82 \cdot 0.91 = 18.03$$

# Tab. 8.2 – Valori caratteristici (Xk) dei parametri geotecnici di Tab. 8.1, per le profondità comprese fra 3,0 m e 9,0 m da p.c.

| Angolo di            | Modulo di                | Peso di volume |
|----------------------|--------------------------|----------------|
| resistenza al taglio | deformazione             | naturale       |
| φ <sub>k</sub> '     | E <sub>k</sub> ' (KN/m²) | γ (KN/m³)      |
| 27°                  | 62586                    | 18.00          |

## 8.2 VALORI DI PROGETTO

Sono di seguito riportate le tabelle riepilogative per il calcolo dei valori di progetto (Xd), con riferimento ai due approcci fissati dalle NTC 2018.

I coefficienti parziali ( $\gamma_M$ ), necessari per la correlazione Xk  $\to$  Xd, sono ricavati dalle tabelle del cap. 6 delle NTC 17/01/2018.

Tab. 8.3 – APPROCCIO 1 – Combinazione 1 (A1 + M1 + R1)

|    | VAL. CARATT.<br>Xk      | COEFF.<br>PARZIALE<br>γ <sub>M</sub> | VAL. DI PROG.<br>Xd     |
|----|-------------------------|--------------------------------------|-------------------------|
| φ' | 27°                     | 1,0                                  | 27°                     |
| γ  | 18.00 kN/m <sup>3</sup> | 1,0                                  | 18.0 kN/m <sup>3</sup>  |
| E' | 62586 kN/m <sup>2</sup> |                                      | 62586 kN/m <sup>2</sup> |

Tab. 8.4 - APPROCCIO 1 - Combinazione 2 (A2 + M2 + R2)

|    | VAL. CARATT.<br>Xk      | COEFF.<br>PARZIALE<br>γ <sub>M</sub> | VAL. DI PROG.<br>Xd     |
|----|-------------------------|--------------------------------------|-------------------------|
| φ' | 27°                     | 1,25                                 | <b>22</b> °             |
| γ  | 18.0 kN/m <sup>3</sup>  | 1,0                                  | 18.0 kN/m <sup>3</sup>  |
| E' | 62586 kN/m <sup>2</sup> |                                      | 62586 kN/m <sup>2</sup> |

**Tab. 8.5 – APPROCCIO 2** (A1 + M1 + R3)

|    | VAL. CARATT.<br>Xk      | COEFF.<br>PARZIALE<br>γ <sub>M</sub> | VAL. DI PROG.<br>Xd     |
|----|-------------------------|--------------------------------------|-------------------------|
| φ' | 27°                     | 1,0                                  | 27°                     |
| γ  | 18.0 kN/m <sup>3</sup>  | 1,0                                  | 18.0 kN/m <sup>3</sup>  |
| E' | 62586 kN/m <sup>2</sup> |                                      | 62586 kN/m <sup>2</sup> |

## 9. CONSIDERAZIONI CONCLUSIVE

Gli elementi desunti attraverso questo studio ed acquisiti sia dal sopralluogo in sito, sia dall'applicazione dei comuni metodi di calcolo, consentono di esporre le seguenti considerazioni:

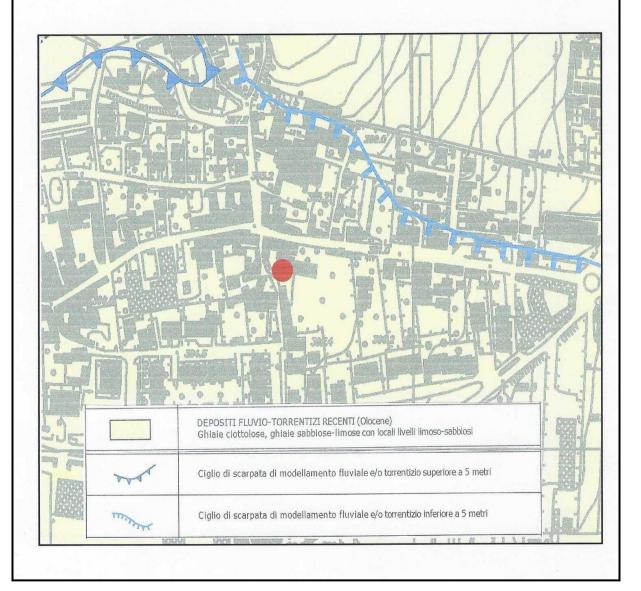
- allo stato attuale non vengono segnalate evidenze morfologiche di fenomeni dissestivi in atto;
- la sequenza stratigrafica, osservata tramite i due sondaggi, mette in evidenza la presenza di terreni grossolani associati alle sequenze deposizionali più fini di natura fluviale;
- le stratigrafie evidenziano la presenza di terreni incoerenti ghiaioso sabbiosi, debolmente limosi, ad ottime caratteristiche geotecniche e geomeccaniche, eccetto uno strato sabbioso del S1 tra 2.7 m e 4.4 m che presenta un modesto addensamento (Nspt = 16 colpi/30 cm) al contrario di tutta la restante sequenza stratigrafica che presenta valori superiori a 50 colpi/30 cm e spesso rifiuto alla penetrazione dell'utensile;
- la determinazione dei tre parametri geotecnici fondamentali (φ' = 27°, c' = 0.0 KPa e γ = 18.0 KN/m³) consente al progettista delle opere strutturali di definire con sicurezza sia la capacità portante, sia i cedimenti del terreno, in funzione dei carichi applicati e della tipologia delle fondazioni adottate;
- la soggiacenza della falda acquifera è normalmente dell'ordine di 6.0/- 7.0 m da p.c. e,
   quindi, non influisce sulle fondazioni in progetto previste a 3.0 m da p.c.;
- agli elementi ora esposti si aggiungono le considerazioni inerenti la caratterizzazione sismica del sito d'interesse, i cui dati sono raccolti nel capitolo 6 e dai quali non si rilevano condizioni critiche di potenziale deformazione permanente dei suoli associate a fenomeni di liquefazione;

- dal punto di vista morfologico, poiché il terreno interessato dal progetto appartiene alla Classe I di edificabilità della Carta d'Idoneità all'Utilizzazione Urbanistica del P.R.G.C. vigente, non vi sono condizionamenti geologici e/o geotecnici all'utilizzazione urbanistica dell'area come previsto dal progetto;
- Si conferma, quindi, la piena fattibilità dell'intervento come esposto in questo studio, rammentando che qualora nelle successive fasi di scavo dovessero essere osservate tipologie di terreno, differenti da quelle attualmente note con l'indagine geognostica eseguita, dovrà esserne data comunicazione allo scrivente, affinchè possa valutare l'idoneità delle scelte qui adottate.

Nulla osta, quindi, dal punto di vista geologico e geotecnico, alla realizzazione del progetto di P.d.R. ad Abbadia Alpina nel Comune di Pinerolo (TO), tra Via Nazionale e Via Madonnina, come indicato nel presente studio geologico – geotecnico.

Dott. Geol. Guido PENNAZZATO

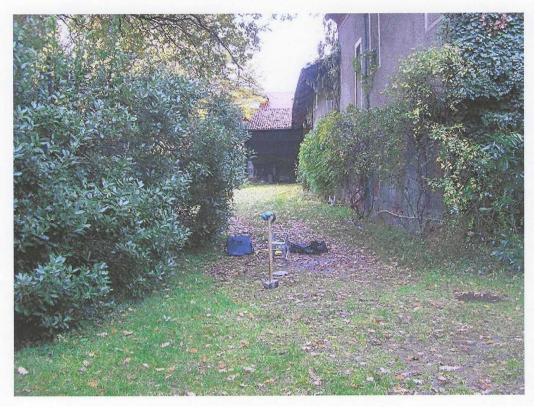



# ALLEGATI

## COMUNE DI PINEROLO (TO)

## Sig. BERIA D'ARGENTINA MAURIZIO

## PIANO DI RECUPERO NELL'AREA A 1.2 DI P.R.G.C.


## CARTA GEOLOGICA



## INDAGINE GEOFISICA (TECHGEA SRL) - PROVA MASW



# Eurogeo s.r.l Sito di Via Madonnina 5 - Pinerolo (TO)



Indagini geofisiche finalizzate alla caratterizzazione litostratigrafica del sottosuolo

## **RELAZIONE TECNICA**

Relazione n.:

1862/11

Redatto da: Controllato da: Dott. Luigi Benente Dott. Geol. Mario Naldi

Data:

Novembre 2011

Revisione:

U

Techgea Srl Sede legale e operativa: Via Carlo Viola 78 11026 Pont Saint Martin (AO) Tel 011 700113 - Fax 011 7077673 - e-mail: info@techgea.eu

| Euroge                          | o s.r.l.                   | Sommario                       | Relazione n. 1862/11 |
|---------------------------------|----------------------------|--------------------------------|----------------------|
| Via Madonnina 5 – Pinerolo (TO) |                            |                                | Novembre 2011        |
| 1 IN                            | TRODUZIONE                 |                                | 1                    |
| 2 ST                            | RUMENTAZIONE UTILIZZATA    |                                | 1                    |
| 3 UE                            | BICAZIONE INDAGINI E ACQUI | SIZIONE DATI                   | 2                    |
| 4 EL                            | ABORAZIONE DATI            |                                | 3                    |
| 5 RI                            | SULTATI DELLE PROVE MASV   | /                              | 3                    |
| 5.1                             | DEFINIZIONE DEL CALCOLO    | D DELL'AZIONE SISMICA DI PROGE | ТТО 3                |
| 5.2                             | PROFILO DI VELOCITA' E V   | ALUTAZIONE DEL PARAMETRO Vs3   | 305                  |
| 6 CC                            | ONSIDERAZIONI CONCLUSIVE   |                                | 6                    |
|                                 |                            |                                |                      |

## In allegato:

Appendice A Cenni sulla metodologia MASW

## Figure:

Figura 1 Ubicazione indagine geofisica

Figura 2-3 Risultati indagine MASW

Figure 4 Documentazione fotografica

Techgea Srl Sede legale e operativa: Via Carlo Viola 78 11026 Pont Saint Martin (AO) Tel 011 700113 - Fax 011 7077673 - e-mail: info@techgea.eu

#### 1 INTRODUZIONE

La presente relazione illustra e descrive l'indagine geofisica di tipo sismico (MASW – Multichannel Analysis of Surface Waves) realizzate nel territorio comunale di Pinerolo, dove è previsto un intervento di edilizia rurale.

Scopo dell'indagine è definire il parametro Vs<sub>30</sub> per la classificazione sismica dei suoli (in accordo al D.M. 14.01.2008) e successivi aggiornamenti.

Il piano di indagini ha previsto la realizzazione di una prova MASW per il calcolo del parametro  $Vs_{30}$ . In quanto segue si illustrano ed analizzano i risultati ottenuti.

#### 2 STRUMENTAZIONE UTILIZZATA

L'acquisizione dei dati sismici è stata realizzata con un sismografo a 24 canali dotato di un convertitore analogico/digitale a 24 bit (unità Daq Link III, Seismic Source Itd.). Lo strumento è fornito di una connessione di rete standard 10/100 (base RJ45) per la comunicazione con un computer portatile su cui è installato un apposito programma (VibraScope ® v.2.4.40) che gestisce la visualizzazione, l'analisi e la memorizzazione delle forme d'onda registrate.

I geofoni utilizzati (Weihai Sunfull) possiedono una frequenza di risonanza pari 4.5 Hz con distorsione inferiore allo 0.2%.

L'energizzazione si è ottenuta con massa battente da 10 Kg su piastra metallica. Per l'innesco (trigger) si è utilizzato uno "shock sensor" collegato alla mazza battente e connesso via cavo al sismografo.

Cenni relativi alla metodologia di indagine sono riportati in Appendice A.

Techgea Srl Sede legale e operativa: Via Carlo Viola 78 11026 Pont Saint Martin (AO) Tel 011 700113 - Fax 011 7077673 - e-mail: info@techgea.eu

Relazione n. 1862/11 Novembre 2011

#### 3 UBICAZIONE INDAGINI E ACQUISIZIONE DATI

Come detto nel capitolo introduttivo, l'indagine ha previsto la realizzazione di una prova MASW che, compatibilmente con gli spazi disponibili in sito, è stata ubicata nell'area su cui si realizzerà il fabbricato in progetto (ubicazione riportata in Figura 1). La linea è stata realizzata posizionando 24 geofoni a 4.5 Hz equispaziati di 2 m, per un totale di 46 m lineari di stendimento.

Pagina 2

| Depth         |             |              |                                             | Receiver Spr | ead (RS) (n           | 1)        |
|---------------|-------------|--------------|---------------------------------------------|--------------|-----------------------|-----------|
| $(Z_{max})^L$ | Source (S)2 | Receiver (R) | ceiver (R) <sup>3</sup> Length <sup>4</sup> | Source       | Receiver Spacing [dx] |           |
| (m) (lb)      | (Hz)        | (D)          | Offset <sup>5</sup> (X <sub>1</sub> )       | 24-ch*       | 18-ch                 |           |
| ≤ 1.0         | <u>\$1</u>  | 4.5-100      | 1-3                                         | 0.2-3.0      | 0.05-0.1              | 0.02-0.05 |
|               | (1)**       | (40)         | (2.0)                                       | (0.4)        | (0.1)                 | (0.05)    |
| 1-5           | 1-5         | 4.5-40       | 1-15                                        | 0.2-15       | 0.05-0.5              | 0.02-0.3  |
|               | (5)         | (10)         | (10)                                        | 12)          | (0.5)                 | (0.25)    |
| 5 10          | 5 10        | ≤ 10         | 5 30                                        | 1 30         | 0.2 1.2               | 0.1 0.5   |
|               | [10]        | [4.5]        | (20)                                        | 14)          | (1.0)                 | (0.5)     |
| 10-20         | ≥ 10        | ≤ 10         | 10-60                                       | 2-50         | 0.4-2.5               | 0.2-1.2   |
|               | (20)        | (4.5)        | (30)                                        | (10)         | (1.5)                 | (1.0)     |
| 20-30         | > 7()       | < 4.5        | 20-90                                       | 4-90         | 0.8-3.8               | 0.4-1.9   |
|               | (20)        | (4.5)        | (50)                                        | (10)         | (2.0)                 | (1.5)     |
| 30 50         | ≥ 10 (20)   | ≤ 4.5        | 30 150                                      | 6 150        | 1.2 6.0               | 0.6 3.0   |
|               | or passive  | (4.5)        | (70)                                        | (15)         | (3.0)                 | (2.0)     |
| > 50          | ≥ 10 (20)   | ≤ 4.5        | > 50                                        | > 10         | > 2.0                 | > 1.0     |
|               | or passive  | (4.5)        | (150)                                       | (30)         | (6.0)                 | (4.0)     |

Tabella 1 - Disposizione geometrica ottimale su linea MASW in relazione alla profondità di indagine (da www.masw.com)

Per l'acquisizione dei dati si sono individuati 6 punti di energizzazione; tali punti sono stati ubicati ad un'estremità dello stendimento, alla distanza massima di 12 metri dall'ultimo geofono. Per ogni punto di energizzazione sono stati generati almeno 3 impulsi sismici.

Le coordinate geografiche assolute del punto di riferimento del profilo MASW (per il calcolo  $VS_{30}$ ) sono:

- N 44.88547 Latitudine
- E 7.30733 Longitudine

Techgea Srl Sede legale e operativa: Via Carlo Viola 78 11026 Pont Saint Martin (AO) Tel 011 700113 - Fax 011 7077673 - e-mail: info@techgea.eu

#### 4 ELABORAZIONE DATI

I dati acquisiti sono stati elaborati con il software Surfseis V. 3.05 (Kansas University, USA), che analizza la curva di dispersione sperimentale per le onde di Rayleigh. L'inversione numerica della curva, secondo un processo iterativo ai minimi quadrati, consente di ottenere un profilo di velocità delle onde di taglio nel sottosuolo.

#### 5 RISULTATI DELLE PROVE MASW

### 5.1 DEFINIZIONE DEL CALCOLO DELL'AZIONE SISMICA DI PROGETTO

Secondo la normativa sismica vigente, rappresentata per il Piemonte dalla D.G.R. 19/01/2010, n. 11-13058, il Comune di Pinerolo ricade in zona 3.

II D.M. 14/01/2008 "Approvazione delle Nuove Norme Tecniche sulle Costruzioni" mette a disposizione dei professionisti uno strumento basato sul progetto sviluppato in collaborazione dall' INGV e dal DPC - "S1" - per il calcolo dei parametri rappresentativi delle componenti (orizzontali e verticali) delle azioni sismiche di progetto per qualsiasi sito del territorio nazionale.

Si forniscono di seguito i parametri a cui sopra si è fatto cenno, calcolati utilizzando le coordinate del centro dello stendimento MASW.

| T <sub>R</sub> [anni] | a, [g] | F <sub>0</sub> [-] | T <sub>c</sub> * [s] |
|-----------------------|--------|--------------------|----------------------|
| 30                    | 0.039  | 2.458              | 0.205                |
| 50                    | 0.051  | 2.428              | 0.226                |
| 72                    | 0.061  | 2.449              | 0.231                |
| 101                   | 0.072  | 2.433              | 0.241                |
| 140                   | 0.083  | 2.441              | 0.246                |
| 201                   | 0.096  | 2.437              | 0.252                |
| 475                   | 0.132  | 2.462              | 0.263                |
| 975                   | 0.166  | 2.490              | 0.272                |
| 2475                  | 0.216  | 2.542              | 0.284                |

Tabella 2 – Valori dei parametri  $a_g$ ,  $F_o$ ,  $T_c^{\star}$  per i periodi di ritorno  $T_R$  di riferimento

| Eurogeo s.r.l.                  | 5        | Relazione n. 1862/11 |
|---------------------------------|----------|----------------------|
| Via Madonnina 5 – Pinerolo (TO) | Pagina 4 | Novembre 2011        |

La medesima normativa individua come parametro di riferimento per la classificazione sismica dei suoli la velocità media di propagazione delle onde di taglio entro i primi 30 m di profondità dal piano campagna (Vs<sub>30</sub>) e viene calcolato con la seguente formula:

$$Vs_{30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

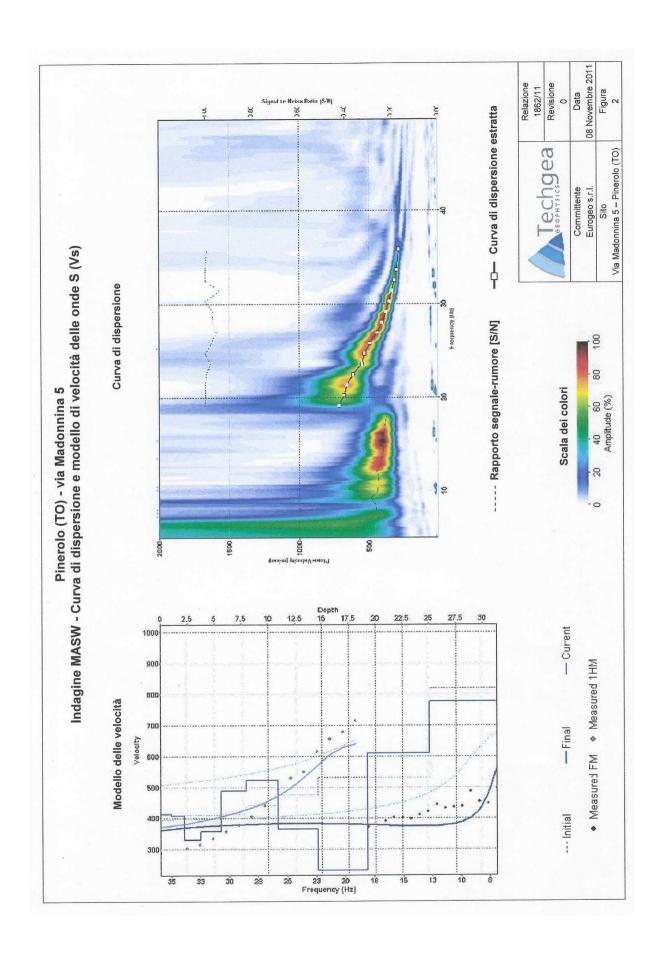
dove  $h_i$  e  $V_i$  indicano lo spessore (in m) e la velocità (in m/s) delle onde di taglio (per deformazioni di taglio  $\gamma$ < 10  $^{-6}$ ) dello strato i-esimo, per un totale di N strati presenti nei 30 m superiori. Nella Tabella 3, riportata nella pagina seguente, si presenta la classificazione sismica prevista dal suddetto Decreto Ministeriale.

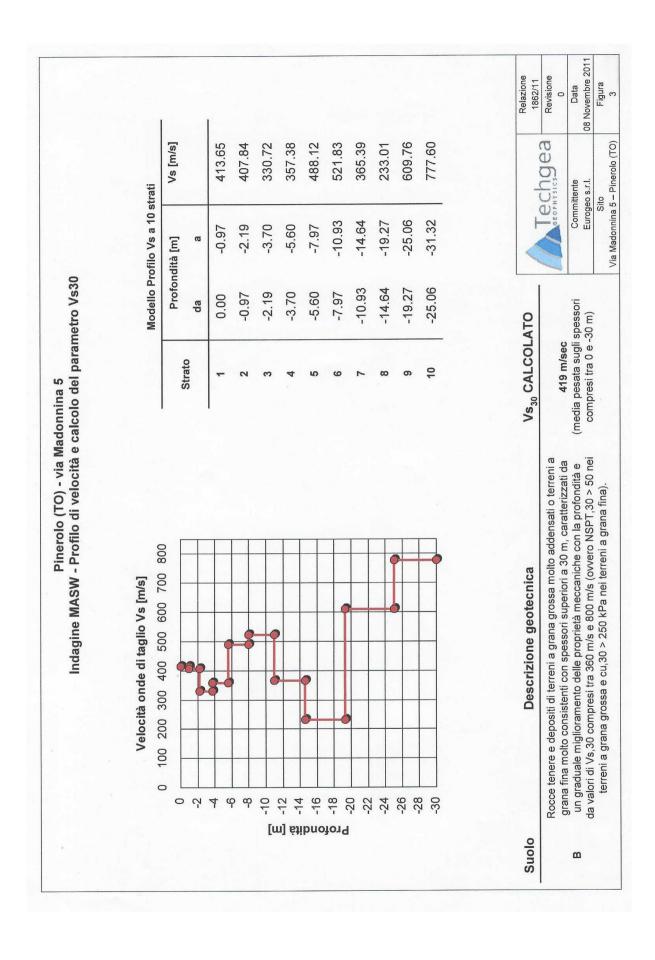
Tabella 3: Classificazione del tipo di suolo secondo la vigente normativa sismica italiana

| Eurogeo s.r.l.                  | Dogino 5 | Relazione n. 1862/11 |
|---------------------------------|----------|----------------------|
| Via Madonnina 5 – Pinerolo (TO) | Pagina 5 | Novembre 2011        |

### 5.2 PROFILO DI VELOCITA' E VALUTAZIONE DEL PARAMETRO Vs30

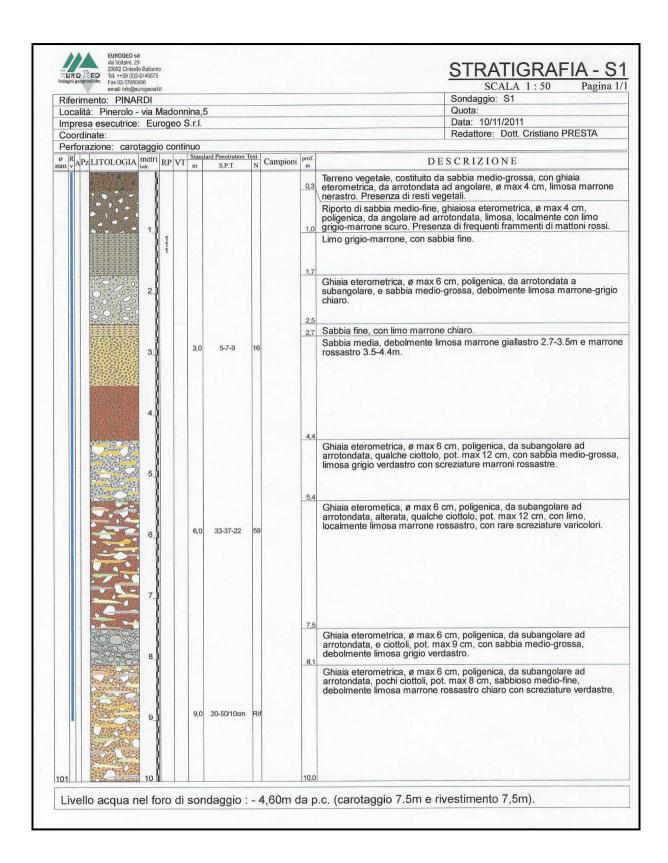
Come illustrato nella Figura 3, il valore di Vs<sub>30</sub> ottenuto tramite la prova MASW è pari a 419 m/s a partire dal piano campagna.

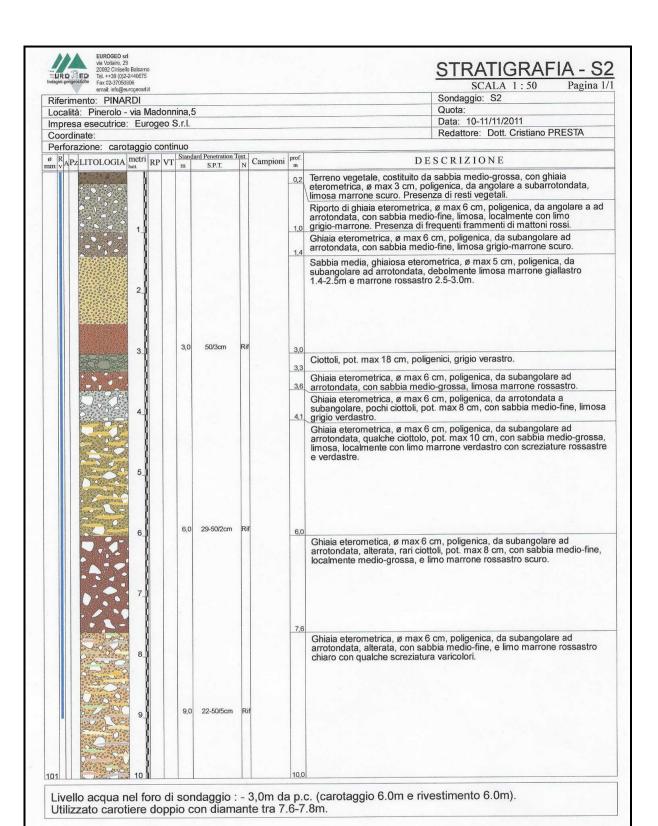

L'analisi del profilo stratigrafico, riportato in Figura 3, evidenzia la presenza di quattro livelli stratigrafici principali:


- 1. un livello superficiale, fino a circa 5.6 m di profondità, con V<sub>S</sub> compresa tra 357 e 408 m/s;
- 2. un livello mediano da 5.6 fino a circa 14.6 metri, caratterizzato da valori di velocità delle onde di taglio comprese tra 365 e 488 m/s;
- 3. dalla profondità di circa 14.6 metri fino a ca. 19 metri è presente un'inversione di velocità, probabilmente correlabile ad una variazione granulometrica dei depositi.
- 4. un livello inferiore a profondità superiori a 19 metri caratterizzato da valori di velocità superiori a 609 m/s circa.

In relazione al valore di Vs<sub>30</sub> calcolato pari a 419 m/s, si definisce il contesto geotecnico in oggetto come suolo di classe B.

| ove sono previsti interventi di e          | on metodologia MASW realizzata nel territorio comunale di Pinero<br>dilizia rurale, ha evidenziato un valore del parametro Vs₃o pari a 4 |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| m/s, corrispondente ad un suolo            | o di classe sismica "B".                                                                                                                 |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
|                                            |                                                                                                                                          |
| Relazione redatta da:                      |                                                                                                                                          |
| Relazione redatta da:                      |                                                                                                                                          |
|                                            | Luce Bourte                                                                                                                              |
| Relazione redatta da:  Dott. Benente Luigi | Lung Bourte                                                                                                                              |
|                                            | Lug Bourte                                                                                                                               |
|                                            | Lugi Bourte<br>Mand Wald                                                                                                                 |

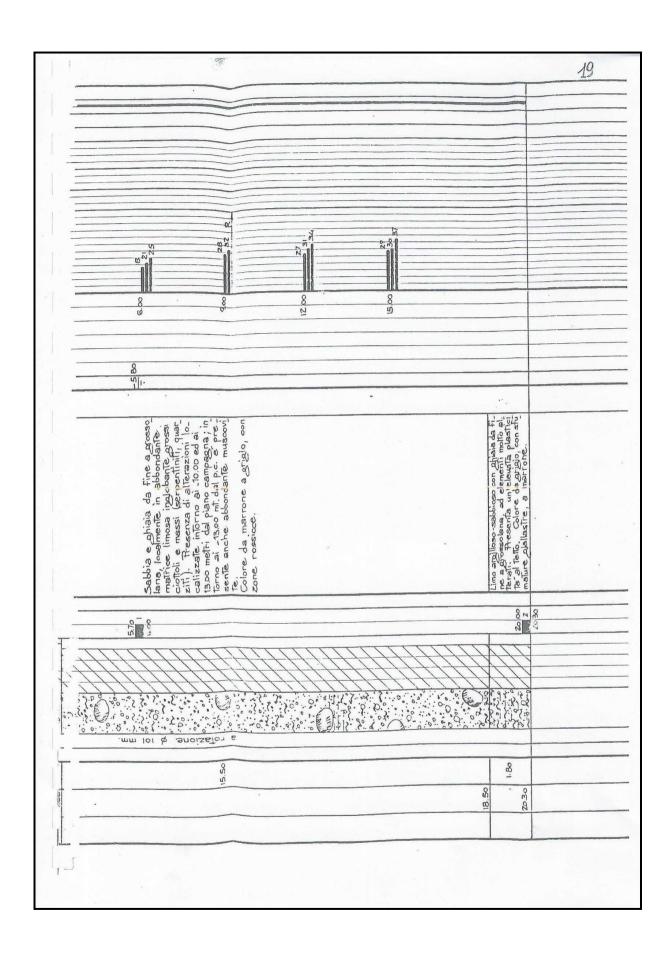


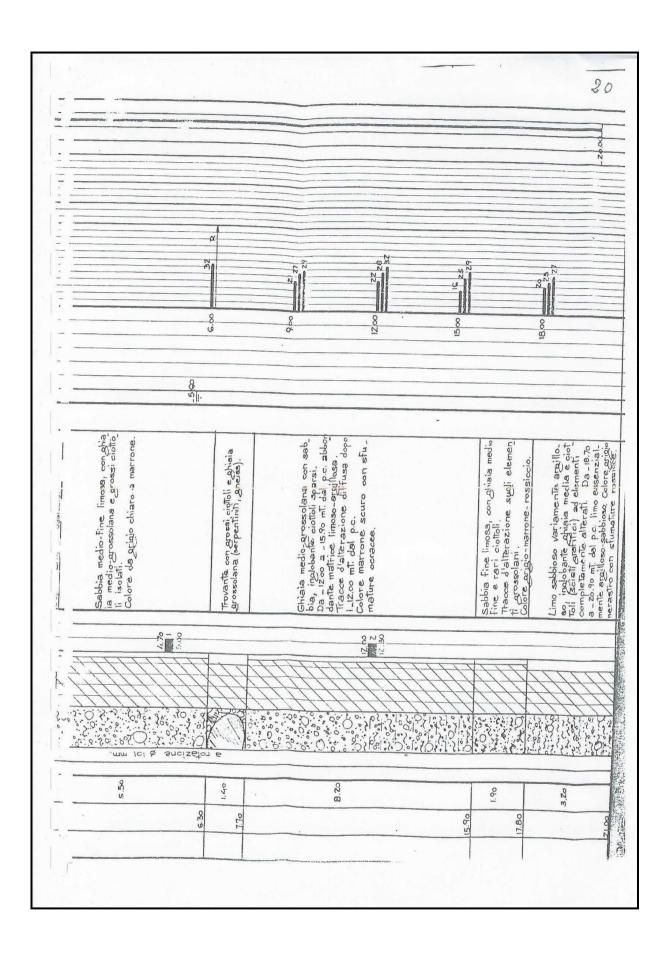





## STRATIGRAFIE INDAGINI GEOGNOSTICHE








|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | TUBO PIEZOMETRICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | AANE TEST KG 'cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | POKET PENETR Kg.5m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                   | ATIOITSAL9 PLASTICITA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SNIC                | Sport CEMENTAZIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEOTECNICA          | Jecole COMPATTAZIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GE                  | ORADNAT2 of NOITARTBURY CT NOITARTBU |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , ,                                                                              | \$2<br>\$2<br>\$2<br>\$2<br>\$2<br>\$3<br>\$3<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4<br>\$4        |
| QUOTA RIF./TO CAPOSALI/O IN MI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACQUA               | PROVE DI<br>PERMEABILITÀ<br>(4) DI CECON)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                  | Ú                                                                                                                                               |
| APOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                   | BRBR20MTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | 8                                                                                                                                               |
| 0 077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | LIVELLO DELLA FALDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
| RIF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | NATURA GEOLOGICA<br>DEL TERRENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | 0 <sup>1</sup> _ L <sup>1</sup>                                                                                                                 |
| COOP CASA PIEMONTE PINEROLO  2  ultimato il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DESCRIZIONE         | PEZU BINOIZADIRIOSZIONE USBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Coffivo gaticolo limoso gibolmente asbo-<br>blogo goli Bebondanti regil. Vegetalil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sabbia fine e ghiaia medio-fine, debolmente limosa, ipobobante ghiaia grassolana e ciottoli. Colore grizio chiaro. | Sabbia e Bhiaia da Fine a grasso<br>lana, locelmente in abbondante,<br>marinae limosa ingobante grasso<br>pointoli, e massi (serpentinili, quar |
| II TEN IE<br>IRE<br>GGGIO n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 930                 | PROF IN ML. E Nº LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                       |
| MIII<br>IERE<br>IAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AG                  | PREL, CAMPIONE IND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | the s                                                                                                                                           |
| COMMITENTE CANTIERE SONDAGGIO I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RISULTATO DEL SONDA | A:DOOR NI DIBBATORAD 6 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | di in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    | 29.50                                                                                                                                           |
| SORECO Saction to the solution of the solution | SULTATO             | OADS JAC & A AMATRIC AMARENTARIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s | 0.000                                                                                                              |                                                                                                                                                 |
| ondo t<br>frema<br>C so 1<br>69 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Œ                   | COESIONE NELLA CAROTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | TM NI OTARTZ ASNETOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.50                                                                                                               |                                                                                                                                                 |
| SORECO<br>10098 RIVOLLETO<br>Tel. (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUOTE               | TM MI ATIGNORORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    | ,<br>n                                                                                                                                          |
| 300 8400<br>8400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                   | TW NI OT HIS ATOUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                                                                                 |



|                                                                                                     |                         | TURG MICHARDRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                                                                                                |                                                                                                                               |                                                                              |
|-----------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                                     |                         | ODIBLE MOSTER OBUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | promise of                                                                                                     |                                                                                                                               |                                                                              |
|                                                                                                     |                         | VANE TEST Kq 'cm² POKET PENETR Kq 'cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                |                                                                                                                               |                                                                              |
| 00                                                                                                  | 4                       | ATIOITSAJ9 pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                                                                                                |                                                                                                                               |                                                                              |
|                                                                                                     | GEOTECNICA              | Tebore CEMENTAZIONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                                                                                                                |                                                                                                                               |                                                                              |
|                                                                                                     | ЭТЕС                    | BUOIZATTARMOD #10980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                                |                                                                                                                               |                                                                              |
|                                                                                                     | GEO                     | 01<br>OFFUDARD<br>02<br>PEMETRATION<br>04 04<br>04 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                                                | α<br>Θ                                                                                                                        |                                                                              |
|                                                                                                     | ACQUA                   | PEOVE DI<br>ATIJIBABINITA<br>(IIDO LUGEON)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                | 8<br>Ġ                                                                                                                        |                                                                              |
| V                                                                                                   |                         | BB3580W74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                                | 8                                                                                                                             |                                                                              |
| 2                                                                                                   |                         | רואפררס DEררץ צירם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                | ٠.  .                                                                                                                         |                                                                              |
| QUOTA RIF /10 CAPO*ALDO IN 1/1                                                                      | DESCRIZIONE             | ADIDOLOGICA<br>OET PER DE OEGO PE |   |                                                                                                                |                                                                                                                               | 1                                                                            |
| S. ultimato il                                                                                      |                         | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Coltivo garicolo sabbioso-i moso, con eb-<br>hondanti resti vezciali al tetto.<br>Colore marriore - rossiccio. | Sabbia medio-fine limasa, conghia<br>la medio-grossolana e grossi ciolto<br>li isolati.<br>Colore da grigio chiaro a marrone. | Trovante con grossi, ciglioli e phioia<br>grossolana (serpentinit), gneiss). |
| 200                                                                                                 | GIO                     | BOBE N ML E Nº LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                                | <u> </u>                                                                                                                      |                                                                              |
| = 0                                                                                                 | JAG                     | SEEL CAMPIONE IND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                | 67.1/<br>0.00.2                                                                                                               | T -                                                                          |
| CANTIERE SONDAGGIO n. Iniziato il                                                                   | RISULTATO DEL SONDAGGIO | IO EJAUTKAORAS (2)<br>ALODOR KI OLDĎATORAS (2)<br>24<br>ICOR (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 1                                                                                                              |                                                                                                                               |                                                                              |
| 19 ONE 20   Sictoria Tecnorontole<br>(0038 Rivort (10) - 0.50 Francia 2277B<br>Tel (01) 1 959 23 13 | SULTATO                 | APARZITARTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 | 100                                                                                                            | mm 1c1 & anoisett                                                                                                             | My della                                                                     |
| 2,50 F.                                                                                             | RIS                     | ATORAC ALLEN BUDIZECO<br>CROP JEG & E AVETR 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | -                                                                                                              | and told a section                                                                                                            |                                                                              |
| Aut (0) 11 959 23 13                                                                                |                         | TM NI CTARTS ASVBTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 0.80                                                                                                           | NO.                                                                                                                           | 1.40                                                                         |
| RIVERT                                                                                              | апоте                   | TIV N. ATIQNGRORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 | 8.0                                                                                                            |                                                                                                                               | 201                                                                          |
| 10098                                                                                               | ٥                       | TM MLOT BIR ATOUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                |                                                                                                                               |                                                                              |
|                                                                                                     | !                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | -                                                                                                              |                                                                                                                               | 4                                                                            |



| OUOTE RISULTATO DEL SONDAGGIO DESCRIZIONE ACOUA GEOTECHICA  FETROGRAFIA  10 00 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                          | SORECO . | pronto ini<br>Sistema T | ecnocontrol -<br>ancia 227/B | CANT                                            | AGGIO r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E MOSCA (MARMIST<br>BBADIA ALPINA (MARMIST<br>1 OUO<br>ullimato il                                                                                      | TA RIF /                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | SALDO IN MT.                             |      | 8.6 | 5      |     |     |     |      |    |          |                   | -                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|------|-----|--------|-----|-----|-----|------|----|----------|-------------------|-------------------|
| Terreno interessate da operazioni di riporto, costituti de argilla limasa con sabbia limasa con sabbia limasa con sabbia limasa con colore grano beiga.  2.50  2.50  3.30  Chiaia con sabbia limasa con sabbia limasa con colore grano beiga.  Chiaia con sabbia limasa con colore grano beiga.                                                            | QUOTE    | TRIS                    | SULTATO                      | DEL SOND                                        | AGGIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESCRIZIONE                                                                                                                                             |                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        | ACQUA                                    | Г    |     |        |     | GEO | TEC | CNIC | CA | -        |                   |                   |
| Terreno interessato da operazioni di riporto, costituito di arguila limasa con aporadice ginaiello ed isolati trammenti di malloni. Molta plastico. Colore bru. no.  250  Grossi cioltoli e ghiaiello, con sabbia più o meno limasa. Colore grigio-beige.                                                                                                  |          | +-                      |                              | PERCENTUALE DI<br>CAROTAGGIO IN ROCCIA<br>(ROD) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PETROGRAFIA                                                                                                                                             | MATURA GEOLOGICA<br>DEL TERRENO | IVELLO DELLA FALDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TMOSFERE | PROVE DI<br>PERMEABILITÀ<br>(ino LUGEON) |      |     |        |     |     |     |      |    | T PENETR | VANE TEST Kg /cm² | TUBO PIEZOMETRICO |
| Terreno interessato da operazioni di riporio, cestituito da argilla limasa con apparadico ginaiello ed isole. Ti frammenti di malloni. Molto plastico. Colore bru. no.  250  Grossi cialtoli e ghiaiello, can sabbia più o meno limasa. Colore grigio-bejae.  580  Ghiaia con sabbia limasa con cialti altre volte concentrati in livelli. Colore marrone. |          | 0 6                     | in .                         | 8888                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                       | 20                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ì        |                                          |      | Ĭ.  | ĺ      | 11  |     |     | İ    |    |          |                   |                   |
| Grossi ciottoli e chiaietto, con sabbia piu o meno li mosa. Colore origio-beige.  400  21  320  Ghiaia con sabbia limosa con ciottoli talora isolati altre volte concentrati in livelli. Colore marrone.                                                                                                                                                   | 2.5      | ÷0                      |                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operazioni di riporto, costi-<br>tuito da argilla limasa con<br>sporadico chiaietto ed isola.<br>Ti frammenti di malloni.<br>Molto plastico. Colore bru |                                 | Signature de la company de la |          |                                          |      |     |        |     |     |     |      |    |          |                   |                   |
| Ghiaia con sabbia limosa con cioticii talora isolati altre volte concentrati in livelli. Colore marrone.                                                                                                                                                                                                                                                   | 3.1      | 90                      | 1                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grossi ciottoli e ohialetto,<br>con sabbia piú o meno li-<br>mosa. Colore grigio-bejge.                                                                 |                                 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.64     |                                          | χ.   | 17  | 21 257 | 9   |     |     |      |    |          |                   |                   |
|                                                                                                                                                                                                                                                                                                                                                            |          | 20                      | 0.000                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | altre volte concentrati in                                                                                                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 60                                       | \$   | 2   | 24.    | 136 |     |     |      |    |          |                   |                   |
|                                                                                                                                                                                                                                                                                                                                                            | 10.00    |                         | 800                          |                                                 | The second secon |                                                                                                                                                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                          | 11.0 |     |        |     |     |     |      |    |          |                   |                   |

| LOCA       | LITA'         | Abb            | adia                                    | Al                | pina - Via Circonvallazion                                          | е        | -                  | SON        | IDAG       | GIO          | Nº 1               |
|------------|---------------|----------------|-----------------------------------------|-------------------|---------------------------------------------------------------------|----------|--------------------|------------|------------|--------------|--------------------|
| diametri   | quot          | rel.           | sezione                                 | potenza<br>banchi | descrizione del terreno                                             | campioni | falde<br>acquifere | Pk/<br>/vt | piezometri | inclinometri |                    |
|            | -2.50<br>Þ.C. | 0.00           | 000<br>000<br>000                       | 400               | Gniala media in abbondan-<br>te sabbia grossolana                   |          |                    |            |            |              | -100<br>-17-28     |
|            |               |                | 8                                       | 3,00              | Grossi blocchi (40-60 cm)<br>ciottoli e ghiaia con<br>sabbia grossa |          |                    |            |            |              | -3.00<br>21-26-39  |
| -100 m     |               | -4.00<br>-4.50 |                                         | 1 -               | Sabbia e ghiaietto  Blocchi e ciottoli con                          |          |                    |            |            |              |                    |
| 128        |               | -6.00<br>-7.20 |                                         | 1.20 1.50         | Blocchi e ciottoli                                                  |          |                    |            |            |              |                    |
| WE &       |               | -8.50          |                                         | 7.30              | Ciottoli e ghiaia con<br>sabbia bruna                               |          | H <sub>2</sub> O   |            |            |              | - 8.50<br>23-29-40 |
| ROTAZION'E |               | -12.00         |                                         | 3.50              | Ciottoli e ghiaia con<br>sabbia bruna                               |          | -9.00              |            |            |              | 25-24-40           |
|            |               | -45.00         | 000000000000000000000000000000000000000 | 3.00              | Chiaia a diversa pezza-<br>tura con abbondante<br>sabbia brunastra  |          |                    |            |            |              |                    |
|            |               |                |                                         |                   |                                                                     |          |                    |            |            |              |                    |
|            |               |                |                                         |                   |                                                                     |          |                    |            |            |              |                    |

|           |      |        |                                         |                   | GALLO - Pinerolo<br>pina - Via Circonvallazio              | ne<br>   | -                          | SON        | DAG        | GIO          | Nº 2 |  |
|-----------|------|--------|-----------------------------------------|-------------------|------------------------------------------------------------|----------|----------------------------|------------|------------|--------------|------|--|
| diametri  | quoi | rel.   | sezione                                 | potenza<br>banchi | descrizione del terreno                                    | campioni | falde                      | Pk/<br>/vt | piezometri | inclinometri |      |  |
|           | p.c. | 0.00   | Sec.                                    | 0,                | Sabbia limosa brunastra                                    |          |                            |            |            |              | -    |  |
|           |      | -4.20  | 0.00                                    | 0,80 4.20         | Ghiaia e sabbia                                            |          |                            |            |            |              |      |  |
| 100 mg    |      | -5.00  | 8                                       | 3.00              | Grossi blocchi (40-60 cm<br>ciottoli in sabbiæ gros-<br>sa |          |                            |            |            |              |      |  |
| Ø 128-100 |      |        | 000000                                  | 2.00              | Ciottoli e ghiaia con<br>sabbia                            |          |                            |            |            |              |      |  |
| ROTAZIONE |      | -11.00 |                                         | 4.00              | Blocchi, ciottoli e ghia-<br>ia con abbondante sabbia      |          |                            |            |            |              |      |  |
|           |      |        | 0.0000000000000000000000000000000000000 | 00.4              | Ciottoli e ghiaia con<br>sabbia grossolana bru-<br>nastra  |          | H <sub>2</sub> O<br>-11.50 |            |            |              |      |  |
|           |      |        |                                         |                   |                                                            |          |                            |            |            |              |      |  |

# PROVE GEOTECNICHE DI LABORATORIO

# Dott. Guido PENNAZZATO

GEOLOGO

LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE : Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

#### ANALISI GRANULOMETRICA COMPLETA

LOCALITA'

: PINEROLO

ZONA PRELIEVO: ABBADIA ALPINA - VIA MADONNINA

DATA ANALISI : 15/11/2011

OPERATORE : dott. geologo Guido PENNAZZATO

SONDAGGIO

: S1

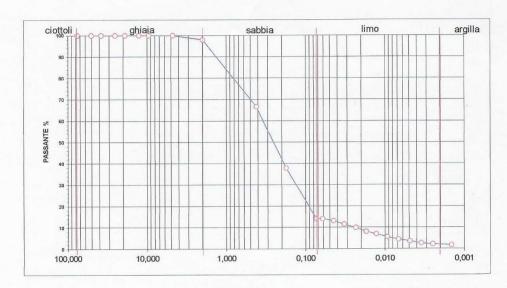
CAMP. : CR 1

PROF. m : 3.0 - 3.4

PESO CAMP. (g) : 1000,0

#### ANALISI MEDIANTE VAGLIATURA

| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto<br>parziale<br>% | Trattenuto<br>totale<br>% | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------------|---------------------------|---------------|
| 3"                | 76,200                     |                           | 0,00                        | 0,00                      | 100,00        |
| 2"                | 50,800                     |                           | 0,00                        | 0,00                      | 100,00        |
| 1" 1/2            | 38,100                     |                           | 0,00                        | 0,00                      | 100,00        |
| 1"                | 25,400                     |                           | 0,00                        | 0,00                      | 100,00        |
| 3/4"              | 19,100                     |                           | 0,00                        | 0,00                      | 100,0         |
| 1/2"              | 12,700                     |                           | 0,00                        | 0,00                      | 100,00        |
| 3/8"              | 9,520                      |                           | 0,00                        | 0,00                      | 100,00        |
| Mesh 4            | 4,760                      |                           | 0,00                        | 0,00                      | 100,0         |
| Mesh 10           | 2,000                      | 20,67                     | 2,07                        | 2,07                      | 97,9          |
| Mesh 40           | 0,420                      | 312,43                    | 31,24                       | 33,31                     | 66,69         |
| Mesh 80           | 0,177                      | 287,89                    | 28,79                       | 62,10                     | 37,9          |
| Mesh 200          | 0,074                      | 236,78                    | 23,68                       | 85,78                     | 14,2          |
| (FONDO)           |                            | 142,23                    | 14,22                       | 100,00                    | 0,0           |


#### ANALISI MEDIANTE SEDIMENTAZIONE

| Dispersivo: esametafosfato di | Na 50/1000 | Campione secco parziale (g)        | :   | 50,0     |
|-------------------------------|------------|------------------------------------|-----|----------|
| Correzione dispersivo         | 1,001      | Peso specifico dei granuli (g/cmc) | 5   | 2,65     |
| Correzione menisco            | -1,001     | Volume sospensione (cc)            | :   | 1000,00  |
| Correzione totale             | 0,000      | Costante K                         |     | 3212,121 |
| Peso specifico del liquido    | 1,001      | Temperatura media (°C)             | - 1 | 22,0     |
|                               |            | Viscosità (mpoises)                | :   | 9,43     |

| Ora   | Tempo | TOTALE secondi | Temperat. | Lettura<br>areometro | Lettura<br>corretta | μ        | Diametro<br>granuli | Passanti<br>parziali<br>% | Passanti<br>totali<br>% |
|-------|-------|----------------|-----------|----------------------|---------------------|----------|---------------------|---------------------------|-------------------------|
|       | dt    | t"             | T°C       | R                    | Zr                  | (C.G.S.) | D (mm)              | N                         |                         |
| 08.50 | 30"   | 30             | 22,00     | 1,0320               | 9,20                | 9,248    | 0,0615              | 99,58                     | 14,16                   |
|       | 1'    | 60             | 22,00     | 1,0300               | 9,70                | 9,248    | 0,0447              | 93,15                     | 13,25                   |
|       | 2'    | 120            | 22,00     | 1,0265               | 10,50               | 9,248    | 0,0329              | 81,91                     | 11,65                   |
|       | 4'    | 240            | 22,00     | 1,0230               | 10,70               | 9,248    | 0,0235              | 70,67                     | 10,05                   |
|       | 8'    | 480            | 22,00     | 1,0190               | 11,70               | 9,248    | 0,0173              | 57,82                     | 8,22                    |
|       | 15'   | 900            | 22,00     | 1,0165               | 12,20               | 9,248    | 0,0129              | 49,79                     | 7,08                    |
| V     | 30'   | 1800           | 22.00     | 1,0135               | 12,90               | 9,248    | 0,0094              | 40,15                     | 5,71                    |
|       | 60'   | 3600           | 22,00     | 1,0110               | 13,50               | 9,248    | 0,0068              | 32,12                     | 4,57                    |
|       | 2h    | 7200           | 22,00     | 1,0090               | 14,00               | 9,248    | 0,0049              | 25,70                     | 3,65                    |
|       | 4 h   | 14400          | 22,00     | 1,0070               | 14,50               | 9,248    | 0,0035              | 19,27                     | 2,74                    |
|       | 8 h   | 28800          | 22,00     | 1,0060               | 14,70               | 9,248    | 0,0025              | 16,06                     | 2,28                    |
| 08.50 | 24 h  | 86400          | 22.00     | 1,0050               | 14,95               | 9,248    | 0,0015              | 12,85                     | 1,83                    |

SONDAGGIO: S1 CAMP.: CR 1 PROF. m: 3.0 - 3.4

# **CURVA CUMULATIVA**



# **RIEPILOGO**

| D (mm) | %       |
|--------|---------|
| 76,200 | 100,000 |
| 50,800 | 100,000 |
| 38,100 | 100,000 |
| 25,400 | 100,000 |
| 19,100 | 100,000 |
| 12,700 | 100,000 |
| 9,520  | 100,000 |
| 4,760  | 100,000 |
| 2,000  | 97,933  |
| 0,420  | 66,690  |
| 0,177  | 37,901  |
| 0,074  | 14,223  |
| 0,062  | 14,163  |
| 0,045  | 13,249  |
| 0,033  | 11,650  |
| 0,023  | 10,051  |
| 0,017  | 8,223   |
| 0,013  | 7,081   |
| 0,009  | 5,711   |
| 0,007  | 4,569   |
| 0,005  | 3,655   |
| 0,004  | 2,741   |
| 0,003  | 2,284   |
| 0,001  | 1,827   |

VAGLIATURA

SEDIMENTAZIONE

# CLASSIFICAZIONE

| CIOTTOLI | GHIAIA | SABBIA | LIMO  | ARGILLA |
|----------|--------|--------|-------|---------|
| %        | %      | %      | %     | %       |
| 0,00     | 2,07   | 83,71  | 11,94 | 2,28    |

PESO DI VOLUME (kN/mc) : 18,54

UMIDITA' (U%)

SABBIA DEBOLMENTE LIMOSA



LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE:

Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

# ANALISI GRANULOMETRICA PER VAGLIATURA

LOCALITA' : PINEROLO (TO)

ZONA PRELIEVO: ABBADIA ALPINA - VIA MADONNINA

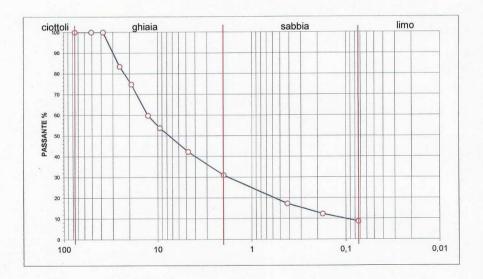
DATA ANALISI

OPERATORE

: dott. geologo Guido PENNAZZATO

SONDAGGIO

: 15/11/2011 : S1


CAMP. : CR2

PROF. m : 6.0 - 6.4

PESO CAMP. (g) : 1500,0



| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto parziale % | Trattenuto totale % | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------|---------------------|---------------|
| 3"                | 76,200                     |                           | 0,00                  | 0,00                | 100,00        |
| 2"                | 50,800                     |                           | 0,00                  | 0,00                | 100,00        |
| 1" 1/2            | 38,100                     |                           | 0,00                  | 0,00                | 100,00        |
| 1"                | 25,400                     | 248,12                    | 16,54                 | 16,54               | 83,46         |
| 3/4"              | 19,100                     | 128,62                    | 8,57                  | 25,12               | 74,88         |
| 1/2"              | 12,700                     | 225,94                    | 15,06                 | 40,18               | 59,82         |
| 3/8"              | 9,520                      | 89,24                     | 5,95                  | 46,13               | 53,87         |
| Mesh 4            | 4,760                      | 172,86                    | 11,52                 | 57,65               | 42,35         |
| Mesh 10           | 2,000                      | 169,58                    | 11,31                 | 68,96               | 31,04         |
| Mesh 40           | 0,420                      | 205,90                    | 13,73                 | 82,68               | 17,32         |
| Mesh 80           | 0,177                      | 74,28                     | 4,95                  | 87,64               | 12,36         |
| Mesh 200          | 0,074                      | 53,98                     | 3,60                  | 91,23               | 8,77          |
| (FONDO)           |                            | 131,48                    | 8,77                  | 100,00              | 0,00          |



### CLASSIFICAZIONE

PESO DI VOLUME (KN/mc): 20,18

| CIOTTOLI | GHIAIA | SABBIA | LIMO+ARGILLA |
|----------|--------|--------|--------------|
| %        | %      | %      | %            |
| 0,00     | 68,96  | 22,28  | 8,77         |

GHIAIA SABBIOSA DEBOLMENTE LIMOSA

# **Dott. Guido PENNAZZATO**

**GEOLOGO** 

### LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE:

Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

# ANALISI GRANULOMETRICA PER VAGLIATURA

LOCALITA'

: PINEROLO (TO)

ZONA PRELIEVO:

ABBADIA ALPINA - VIA MADONNINA

DATA ANALISI

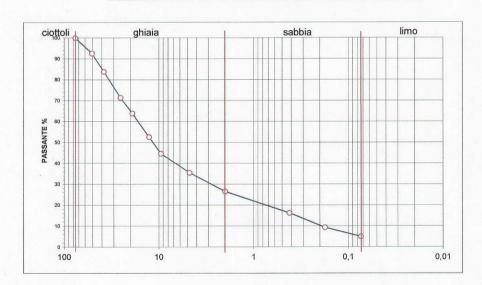
: 15/11/2011

**OPERATORE** 

: dott. geologo Guido PENNAZZATO

SONDAGGIO

: S1


CAMP. : CR3

PROF. m : 9.0 - 9.4

PESO CAMP. (g) : 2000,0



| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto<br>parziale<br>% | Trattenuto<br>totale<br>% | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------------|---------------------------|---------------|
| 3"                | 76,200                     |                           | 0,00                        | 0,00                      | 100,00        |
| 2"                | 50,800                     | 148,46                    | 7,42                        | 7,42                      | 92,58         |
| 1" 1/2            | 38,100                     | 174,98                    | 8,75                        | 16,17                     | 83,83         |
| 1"                | 25,400                     | 248,12                    | 12,41                       | 28,58                     | 71,42         |
| 3/4"              | 19,100                     | 149,76                    | 7,49                        | 36,07                     | 63,93         |
| 1/2"              | 12,700                     | 225,94                    | 11,30                       | 47,36                     | 52,64         |
| 3/8"              | 9,520                      | 158,67                    | 7,93                        | 55,30                     | 44,70         |
| Mesh 4            | 4,760                      | 182,69                    | 9,13                        | 64,43                     | 35,57         |
| Mesh 10           | 2,000                      | 179,54                    | 8,98                        | 73,41                     | 26,59         |
| Mesh 40           | 0,420                      | 205,90                    | 10,30                       | 83,70                     | 16,30         |
| Mesh 80           | 0,177                      | 138,47                    | 6,92                        | 90,63                     | 9,37          |
| Mesh 200          | 0,074                      | 86,14                     | 4,31                        | 94,93                     | 5,07          |
| (FONDO)           |                            | 101,33                    | 5,07                        | 100,00                    | 0,00          |



#### CLASSIFICAZIONE

PESO DI VOLUME (KN/mc): 20,48

| CIOTTOLI | GHIAIA | SABBIA | LIMO+ARGILLA |
|----------|--------|--------|--------------|
| %        | %      | %      | %            |
| 0,00     | 73,41  | 21,53  | 5,07         |

GHIAIA SABBIOSA DEBOLMENTE LIMOSA

LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE:

Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

# ANALISI GRANULOMETRICA PER VAGLIATURA

LOCALITA'

: PINEROLO (TO)

ZONA PRELIEVO:

ABBADIA ALPINA - VIA MADONNINA

DATA ANALISI

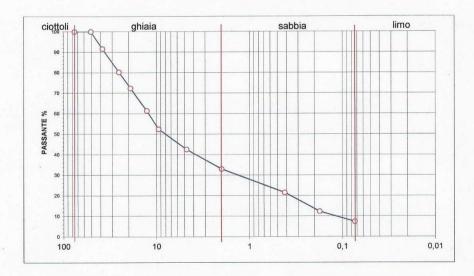
: 15/11/2011

**OPERATORE** 

: dott. geologo Guido PENNAZZATO

SONDAGGIO

: S2


CAMP. : CR1

PROF. m : 3.0 - 3.4

PESO CAMP. (g) : 2000,0



| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto parziale % | Trattenuto<br>totale<br>% | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------|---------------------------|---------------|
| 3"                | 76,200                     |                           | 0,00                  | 0,00                      | 100,00        |
| 2"                | 50,800                     |                           | 0,00                  | 0,00                      | 100,00        |
| 1" 1/2            | 38,100                     | 167,94                    | 8,40                  | 8,40                      | 91,60         |
| 1"                | 25,400                     | 227,78                    | 11,39                 | 19,79                     | 80,21         |
| 3/4"              | 19,100                     | 156,89                    | 7,84                  | 27,63                     | 72,37         |
| 1/2"              | 12,700                     | 219,65                    | 10,98                 | 38,61                     | 61,39         |
| 3/8"              | 9,520                      | 178,47                    | 8,92                  | 47,54                     | 52,46         |
| Mesh 4            | 4,760                      | 197,23                    | 9,86                  | 57,40                     | 42,60         |
| Mesh 10           | 2,000                      | 190,63                    | 9,53                  | 66,93                     | 33,07         |
| Mesh 40           | 0,420                      | 228,32                    | 11,42                 | 78,35                     | 21,65         |
| Mesh 80           | 0,177                      | 184,65                    | 9,23                  | 87,58                     | 12,42         |
| Mesh 200          | 0,074                      | 100,04                    | 5,00                  | 92,58                     | 7,42          |
| (FONDO)           |                            | 148,40                    | 7,42                  | 100,00                    | 0,00          |



# CLASSIFICAZIONE

PESO DI VOLUME (KN/mc): 20,34

| CIOTTOLI | GHIAIA | SABBIA | LIMO+ARGILLA |
|----------|--------|--------|--------------|
| %        | %      | %      | %            |
| 0,00     | 66,93  | 25,65  | 7,42         |

GHIAIA CON SABBIA DEBOLMENTE LIMOSA

LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE:

Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

# ANALISI GRANULOMETRICA PER VAGLIATURA

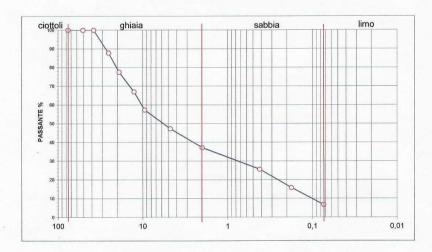
LOCALITA'

: PINEROLO (TO)

ZONA PRELIEVO : ABBADIA ALPINA - VIA MADONNINA

DATA ANALISI : 15/11/2011 OPERATORE

: dott. geologo Guido PENNAZZATO


SONDAGGIO : S2 CAMP. : CR2

PROF. m : 6.0 - 6.4

PESO CAMP. (g) : 2000,0



| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto parziale % | Trattenuto<br>totale<br>% | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------|---------------------------|---------------|
| 3"                | 76.200                     |                           | 0,00                  | 0,00                      | 100,00        |
| 2"                | 50,800                     |                           | 0,00                  | 0,00                      | 100,00        |
| 1" 1/2            | 38,100                     |                           | 0,00                  | 0,00                      | 100,00        |
| 1"                | 25,400                     | 243,87                    | 12,19                 | 12,19                     | 87,81         |
| 3/4"              | 19,100                     | 204,51                    | 10,23                 | 22,42                     | 77,58         |
| 1/2"              | 12,700                     | 209,78                    | 10,49                 | 32,91                     | 67,09         |
| 3/8"              | 9,520                      | 194,56                    | 9,73                  | 42,64                     | 57,36         |
| Mesh 4            | 4,760                      | 199,72                    | 9,99                  | 52,62                     | 47,38         |
| Mesh 10           | 2,000                      | 202,37                    | 10,12                 | 62,74                     | 37,26         |
| Mesh 40           | 0,420                      | 231,98                    | 11,60                 | 74,34                     | 25,66         |
| Mesh 80           | 0,177                      | 197,78                    | 9,89                  | 84,23                     | 15,77         |
| Mesh 200          | 0,074                      | 179,83                    | 8,99                  | 93,22                     | 6,78          |
| (FONDO)           |                            | 135,60                    | 6,78                  | 100,00                    | 0,00          |



#### CLASSIFICAZIONE

PESO DI VOLUME (KN/mc): 20,46

| CIOTTOLI | GHIAIA | SABBIA | LIMO+ARGILLA |
|----------|--------|--------|--------------|
| %        | %      | %      | %            |
| 0.00     | 62.74  | 30.48  | 6,78         |

GHIAIA CON SABBIA DEBOLMENTE LIMOSA

LABORATORIO TERRE

N° 88 ORDINE DEI GEOLOGI DEL PIEMONTE

COMMITTENTE:

Sig. BERIA MAURIZIO

Studio: 10135 TORINO Via Barbera, 66/D - Tel. 011 34.43.41

# ANALISI GRANULOMETRICA PER VAGLIATURA

LOCALITA'

: PINEROLO (TO)

ZONA PRELIEVO: ABBADIA ALPINA - VIA MADONNINA

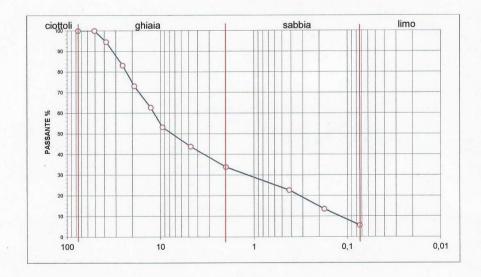
DATA ANALISI

: 15/11/2011

OPERATORE : dott. geologo Guido PENNAZZATO

SONDAGGIO

: S2


CAMP. : CR3

PROF. m : 9.0 - 9.4

PESO CAMP. (g) : 2000,0



| VAGLI<br>A.S.T.M. | Apertura<br>maglie<br>(mm) | Peso<br>trattenuto<br>(g) | Trattenuto parziale % | Trattenuto<br>totale<br>% | PASSANTE<br>% |
|-------------------|----------------------------|---------------------------|-----------------------|---------------------------|---------------|
| 3"                | 76,200                     |                           | 0,00                  | 0,00                      | 100,00        |
| 2"                | 50,800                     |                           | 0,00                  | 0,00                      | 100,00        |
| 1" 1/2            | 38,100                     | 107,84                    | 5,39                  | 5,39                      | 94,61         |
| 1"                | 25,400                     | 228,34                    | 11,42                 | 16,81                     | 83,19         |
| 3/4"              | 19,100                     | 200,43                    | 10,02                 | 26,83                     | 73,17         |
| 1/2"              | 12,700                     | 207,89                    | 10,39                 | 37,23                     | 62,78         |
| 3/8"              | 9,520                      | 190,12                    | 9,51                  | 46,73                     | 53,27         |
| Mesh 4            | 4,760                      | 187,68                    | 9,38                  | 56,12                     | 43,89         |
| Mesh 10           | 2,000                      | 198,83                    | 9,94                  | 66,06                     | 33,94         |
| Mesh 40           | 0,420                      | 224,67                    | 11,23                 | 77,29                     | 22,71         |
| Mesh 80           | 0,177                      | 182,93                    | 9,15                  | 86,44                     | 13,56         |
| Mesh 200          | 0,074                      | 156,67                    | 7,83                  | 94,27                     | 5,73          |
| (FONDO)           |                            | 114,60                    | 5,73                  | 100,00                    | 0,00          |



# CLASSIFICAZIONE

PESO DI VOLUME (KN/mc): 20,74

| CIOTTOLI | GHIAIA | SABBIA | LIMO+ARGILLA |
|----------|--------|--------|--------------|
| %        | %      | %      | %            |
| 0,00     | 66,06  | 28,21  | 5,73         |

GHIAIA CON SABBIA DEBOLMENTE LIMOSA